Rock comminution as a source of hydrogen for subglacial ecosystems

[1]  Carlo Barbante,et al.  A microbial ecosystem beneath the West Antarctic ice sheet , 2014, Nature.

[2]  M. Skidmore,et al.  Chemolithotrophic Primary Production in a Subglacial Ecosystem , 2014, Applied and Environmental Microbiology.

[3]  P. Statham,et al.  Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans , 2014, Nature Communications.

[4]  J. W. Peters,et al.  Molecular evidence for an active endogenous microbiome beneath glacial ice , 2013, The ISME Journal.

[5]  P. Nienow,et al.  Evolution of drainage system morphology at a land‐terminating Greenlandic outlet glacier , 2013 .

[6]  Sridhar Anandakrishnan,et al.  Accelerated subglacial erosion in response to stick-slip motion , 2013 .

[7]  M. Skidmore,et al.  A microbial driver of chemical weathering in glaciated systems , 2013 .

[8]  S. Dutkiewicz,et al.  Printer-friendly Version Interactive Discussion , 2022 .

[9]  M. Sharp,et al.  Methanogenic potential of Arctic and Antarctic subglacial environments with contrasting organic carbon sources , 2012 .

[10]  S. Tulaczyk,et al.  Potential methane reservoirs beneath Antarctica , 2012, Nature.

[11]  Ramón Doallo,et al.  CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics , 2012, Nature Methods.

[12]  J. Priscu,et al.  Dissolved gases in frozen basal water from the NGRIP borehole: implications for biogeochemical processes beneath the Greenland Ice Sheet , 2012, Polar Biology.

[13]  P. Nienow,et al.  Rapid erosion beneath the Greenland ice sheet , 2012 .

[14]  J. W. Peters,et al.  Diversity, Abundance, and Potential Activity of Nitrifying and Nitrate-Reducing Microbial Assemblages in a Subglacial Ecosystem , 2011, Applied and Environmental Microbiology.

[15]  O. Gascuel,et al.  Survey of Branch Support Methods Demonstrates Accuracy, Power, and Robustness of Fast Likelihood-based Approximation Schemes , 2011, Systematic biology.

[16]  J. W. Peters,et al.  Methanogenesis in subglacial sediments. , 2010, Environmental microbiology reports.

[17]  V. Miteva,et al.  Comparison of the microbial diversity at different depths of the GISP2 Greenland ice core in relationship to deposition climates. , 2009, Environmental microbiology.

[18]  W. Peukert,et al.  Kinetics of radical formation during the mechanical activation of quartz. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[19]  M. Moczydłowska The Ediacaran microbiota and the survival of Snowball Earth conditions , 2008 .

[20]  Robin E. Bell,et al.  The role of subglacial water in ice-sheet mass balance , 2008 .

[21]  J. Tison,et al.  Gas isotopes in ice reveal a vegetated central Greenland during ice sheet invasion , 2006 .

[22]  O. Gascuel,et al.  Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. , 2006, Systematic biology.

[23]  T. Onstott,et al.  Radiolytic H2 in continental crust: Nuclear power for deep subsurface microbial communities , 2005 .

[24]  M. Skidmore,et al.  Hydrological controls on microbial communities in subglacial environments , 2005 .

[25]  Dana R. Yoerger,et al.  A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field , 2005, Science.

[26]  N. Pace,et al.  Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  R. Haggerty,et al.  Modeling the subglacial hydrology of the late Pleistocene Lake Michigan Lobe, Laurentide Ice Sheet , 2002 .

[28]  D. Schrag,et al.  The snowball Earth hypothesis: testing the limits of global change , 2002 .

[29]  R. Conrad,et al.  How specific is the inhibition by methyl fluoride of acetoclastic methanogenesis in anoxic rice field soil , 1999 .

[30]  B. Hallet,et al.  Rates of erosion and sediment evacuation by glaciers: A review of field data and their implications , 1996 .

[31]  Todd O. Stevens,et al.  Lithoautotrophic Microbial Ecosystems in Deep Basalt Aquifers , 1995, Science.

[32]  D. Lovley,et al.  Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments , 1988 .

[33]  H. Takeda,et al.  Origin of Hydrogen and Carbon Dioxide in Fault Gases and Its Relation to Fault Activity , 1983, The Journal of Geology.

[34]  H. Wakita,et al.  H2 generation by reaction between H2O and crushed rock: An experimental study on H2 degassing from the active fault zone , 1982 .

[35]  J. Konnerup-Madsen,et al.  Volatiles associated with alkaline igneous rift activity: Fluid inclusions in the Ilímaussaq intrusion and the Gardar granitic complexes (south Greenland) , 1982 .

[36]  Norman L. Guinasso,et al.  Equilibrium Solubilities of Methane, Carbon Monoxide, and Hydrogen in Water and Sea Water, , 1979 .

[37]  R. Thauer,et al.  Energy Conservation in Chemotrophic Anaerobic Bacteria , 1977, Bacteriological reviews.

[38]  J. Chappellaz,et al.  Flow‐induced mixing in the GRIP basal ice deduced from the CO2 and CH4 records , 1995 .

[39]  M Volante,et al.  Physicochemical properties of crystalline silica dusts and their possible implication in various biological responses. , 1995, Scandinavian journal of work, environment & health.

[40]  H. Bernard A Theoretical Model of Glacial Abrasion , 1979, Journal of Glaciology.