Suzuki–Miyaura cross-coupling optimization enabled by automated feedback

An automated, droplet-flow microfluidic system explores and optimizes Pd-catalyzed Suzuki–Miyaura cross-coupling reactions.

[1]  Richard J Ingham,et al.  Organic synthesis: march of the machines. , 2015, Angewandte Chemie.

[2]  Brandon J. Reizman,et al.  An Automated Continuous-Flow Platform for the Estimation of Multistep Reaction Kinetics , 2012 .

[3]  Mark Peplow,et al.  Organic synthesis: The robo-chemist , 2014, Nature.

[4]  S. Buchwald,et al.  Copper-catalyzed domino halide exchange-cyanation of aryl bromides. , 2003, Journal of the American Chemical Society.

[5]  S. Buchwald,et al.  N-Substituted 2-Aminobiphenylpalladium Methanesulfonate Precatalysts and Their Use in C–C and C–N Cross-Couplings , 2014, The Journal of organic chemistry.

[6]  Klavs F. Jensen,et al.  Automated Multitrajectory Method for Reaction Optimization in a Microfluidic System using Online IR Analysis , 2012 .

[7]  Klavs F Jensen,et al.  An integrated microreactor system for self-optimization of a Heck reaction: from micro- to mesoscale flow systems. , 2010, Angewandte Chemie.

[8]  S. Buchwald,et al.  Suzuki-Miyaura cross-coupling of unprotected, nitrogen-rich heterocycles: substrate scope and mechanistic investigation. , 2013, Journal of the American Chemical Society.

[9]  Helen Song,et al.  Reactions in droplets in microfluidic channels. , 2006, Angewandte Chemie.

[10]  Claudio Battilocchio,et al.  Machine‐Assisted Organic Synthesis , 2015, Angewandte Chemie.

[11]  Paul M. Murray,et al.  Ligand and solvent selection in challenging catalytic reactions , 2014 .

[12]  S. Buchwald,et al.  A new palladium precatalyst allows for the fast Suzuki-Miyaura coupling reactions of unstable polyfluorophenyl and 2-heteroaryl boronic acids. , 2010, Journal of the American Chemical Society.

[13]  John F. Hartwig,et al.  A Simple, Multidimensional Approach to High-Throughput Discovery of Catalytic Reactions , 2011, Science.

[14]  A. Kulik,et al.  Nanoscale spatially resolved infrared spectra from single microdroplets. , 2014, Lab on a chip.

[15]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[16]  Norio Miyaura,et al.  Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds , 1995 .

[17]  G. C. Fu The development of versatile methods for palladium-catalyzed coupling reactions of aryl electrophiles through the use of P(t-Bu)3 and PCy3 as ligands. , 2008, Accounts of chemical research.

[18]  Jason E. Kreutz,et al.  Evolution of catalysts directed by genetic algorithms in a plug-based microfluidic device tested with oxidation of methane by oxygen. , 2010, Journal of the American Chemical Society.

[19]  K. Jensen,et al.  Automation in Microreactor Systems , 2013 .

[20]  F. David,et al.  Parameter Estimation in Engineering and Science , 1977 .

[21]  G. Molander,et al.  Scope of the palladium-catalyzed aryl borylation utilizing bis-boronic acid. , 2012, Journal of the American Chemical Society.

[22]  J. Bäckvall,et al.  Dynamic kinetic resolution of homoallylic alcohols: application to the synthesis of enantiomerically pure 5,6-dihydropyran-2-ones and δ-lactones. , 2013, Chemistry.

[23]  Volker Hessel,et al.  Novel process windows for enabling, accelerating, and uplifting flow chemistry. , 2013, ChemSusChem.

[24]  Peter H Seeberger,et al.  Applying flow chemistry: methods, materials, and multistep synthesis. , 2013, The Journal of organic chemistry.

[25]  Oliver J. Dressler,et al.  Droplet-Based Microfluidics , 2014, Journal of biomolecular screening.

[26]  J. Hartwig,et al.  Air Stable, Sterically Hindered Ferrocenyl Dialkylphosphines for Palladium-Catalyzed C−C, C−N, and C−O Bond-Forming Cross-Couplings , 2002 .

[27]  Kevin D. Nagy,et al.  Mixing and Dispersion in Small-Scale Flow Systems , 2012 .

[28]  S. Messaoudi,et al.  2-Aminobiphenyl Palladacycles: The “Most Powerful” Precatalysts in C–C and C–Heteroatom Cross-Couplings , 2015 .

[29]  N. Sach,et al.  Dispersion in Compartmentalized Flow Systems: Influence of Flow Patterns on Reactivity , 2016 .

[30]  István T. Horváth,et al.  Handbook of fluorous chemistry , 2004 .

[31]  Kevin Bateman,et al.  Nanomole-scale high-throughput chemistry for the synthesis of complex molecules , 2015, Science.

[32]  R. Vilar,et al.  Monoligated palladium species as catalysts in cross-coupling reactions. , 2005, Angewandte Chemie.

[33]  Andrew J deMello,et al.  High-throughput, quantitative enzyme kinetic analysis in microdroplets using stroboscopic epifluorescence imaging. , 2015, Analytical chemistry.

[34]  Klavs F Jensen,et al.  Integrated microreactors for reaction automation: new approaches to reaction development. , 2010, Annual review of analytical chemistry.

[35]  S. Buchwald,et al.  Synthesis and application of palladium precatalysts that accommodate extremely bulky di-tert-butylphosphino biaryl ligands. , 2013, Organic letters.

[36]  S. Nolan,et al.  Well-defined N-heterocyclic carbenes-palladium(II) precatalysts for cross-coupling reactions. , 2008, Accounts of chemical research.

[37]  C. A. Tolman,et al.  Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis , 1977 .

[38]  Slawomir Jakiela,et al.  Automated generation of libraries of nL droplets. , 2012, Lab on a chip.

[39]  Klavs F. Jensen,et al.  Simultaneous solvent screening and reaction optimization in microliter slugs. , 2015, Chemical communications.

[40]  Magnus Rueping,et al.  Self-Optimizing Reactor Systems: Algorithms, On-line Analytics, Setups, and Strategies for Accelerating Continuous Flow Process Optimization , 2014 .

[41]  Tza-Huei Wang,et al.  Microfluidic platform for on-demand generation of spatially indexed combinatorial droplets. , 2012, Lab on a chip.

[42]  Gregori Ujaque,et al.  A DFT Study of the Full Catalytic Cycle of the Suzuki−Miyaura Cross-Coupling on a Model System , 2006 .

[43]  Jonathan P. McMullen,et al.  Rapid Determination of Reaction Kinetics with an Automated Microfluidic System , 2011 .

[44]  Anthony C. Atkinson Optimum Experimental Design , 2011, International Encyclopedia of Statistical Science.

[45]  J. Hartwig,et al.  Distinct mechanisms for the oxidative addition of chloro-, bromo-, and iodoarenes to a bisphosphine palladium(0) complex with hindered ligands. , 2005, Journal of the American Chemical Society.

[46]  James V. Beck,et al.  Parameter Estimation in Engineering and Science , 1977 .

[47]  Jonas Boström,et al.  Analysis of Past and Present Synthetic Methodologies on Medicinal Chemistry: Where Have All the New Reactions Gone? , 2016, Journal of medicinal chemistry.

[48]  Klavs F Jensen,et al.  Tools for chemical synthesis in microsystems. , 2014, Lab on a chip.

[49]  G. Lloyd‐Jones,et al.  Selection of boron reagents for Suzuki-Miyaura coupling. , 2014, Chemical Society reviews.

[50]  Shun Su,et al.  Discovery of chemical reactions through multidimensional screening. , 2007, Journal of the American Chemical Society.

[51]  Richard F. Gunst,et al.  Applied Regression Analysis , 1999, Technometrics.

[52]  Ian W Davies,et al.  Looking Forward in Pharmaceutical Process Chemistry , 2009, Science.

[53]  T. Colacot,et al.  Reactions of the 21st Century: Two Decades of Innovative Catalyst Design for Palladium-Catalyzed Cross-Couplings , 2015 .

[54]  B. Trost,et al.  Contemporaneous dual catalysis: chemoselective cross-coupling of catalytic vanadium-allenoate and π-allylpalladium intermediates. , 2011, Journal of the American Chemical Society.

[55]  Delai L Chen,et al.  Microgram-scale testing of reaction conditions in solution using nanoliter plugs in microfluidics with detection by MALDI-MS. , 2006, Journal of the American Chemical Society.

[56]  Klavs F. Jensen,et al.  Scalability of mass transfer in liquid-liquid flow , 2014 .

[57]  Timothy F Jamison,et al.  A three-minute synthesis and purification of ibuprofen: pushing the limits of continuous-flow processing. , 2015, Angewandte Chemie.

[58]  S. Buchwald,et al.  Palladium-catalyzed Suzuki-Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands. , 2008, Accounts of chemical research.

[59]  N. Miyaura Metal‐Catalyzed Cross‐Coupling Reactions of Organoboron Compounds with Organic Halides , 2008 .

[60]  Klavs F Jensen,et al.  Accelerating reactions with microreactors at elevated temperatures and pressures: profiling aminocarbonylation reactions. , 2007, Angewandte Chemie.

[61]  C. Wiles,et al.  Micro Reaction Technology in Organic Synthesis , 2016 .

[62]  Martyn Poliakoff,et al.  Self-optimizing continuous reactions in supercritical carbon dioxide. , 2011, Angewandte Chemie.

[63]  S. Buchwald,et al.  Highly efficient monophosphine-based catalyst for the palladium-catalyzed suzuki-miyaura reaction of heteroaryl halides and heteroaryl boronic acids and esters. , 2007, Journal of the American Chemical Society.

[64]  A. deMello,et al.  Droplet microfluidics: recent developments and future applications. , 2011, Chemical communications.

[65]  Luis M. Fidalgo,et al.  Suzuki-Miyaura coupling reactions in aqueous microdroplets with catalytically active fluorous interfaces. , 2009, Chemical communications.

[66]  Ling Li,et al.  Stereospecific Pd-Catalyzed Cross-Coupling Reactions of Secondary Alkylboron Nucleophiles and Aryl Chlorides , 2014, Journal of the American Chemical Society.

[67]  B. Trost,et al.  Contemporaneous dual catalysis by coupling highly transient nucleophilic and electrophilic intermediates generated in situ. , 2011, Journal of the American Chemical Society.

[68]  W. Näther Optimum experimental designs , 1994 .

[69]  Geoffrey R Akien,et al.  Online quantitative mass spectrometry for the rapid adaptive optimisation of automated flow reactors , 2016 .

[70]  P. Carroll,et al.  NiXantphos: A Deprotonatable Ligand for Room-Temperature Palladium-Catalyzed Cross-Couplings of Aryl Chlorides , 2014, Journal of the American Chemical Society.

[71]  Andrew D Griffiths,et al.  An automated two-phase microfluidic system for kinetic analyses and the screening of compound libraries. , 2010, Lab on a chip.

[72]  Axel Günther,et al.  Micromixing of miscible liquids in segmented gas-liquid flow. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[73]  Elizabeth Farrant,et al.  Rapid discovery of a novel series of Abl kinase inhibitors by application of an integrated microfluidic synthesis and screening platform. , 2013, Journal of medicinal chemistry.

[74]  S. Buchwald,et al.  A new class of easily activated palladium precatalysts for facile C-N cross-coupling reactions and the low temperature oxidative addition of aryl chlorides. , 2008, Journal of the American Chemical Society.

[75]  Natalie Fey The contribution of computational studies to organometallic catalysis: descriptors, mechanisms and models. , 2010, Dalton transactions.

[76]  S. Buchwald,et al.  Design and Preparation of New Palladium Precatalysts for C-C and C-N Cross-Coupling Reactions. , 2012, Chemical science.

[77]  S. Blum,et al.  Organogold reactivity with palladium, nickel, and rhodium: transmetalation, cross-coupling, and dual catalysis. , 2011, Accounts of chemical research.

[78]  G. Yue,et al.  General Suzuki Coupling of Heteroaryl Bromides by Using Tri‐tert‐butylphosphine as a Supporting Ligand , 2014 .

[79]  Ryan L. Hartman,et al.  Deciding whether to go with the flow: evaluating the merits of flow reactors for synthesis. , 2011, Angewandte Chemie.

[80]  M. García‐Melchor,et al.  Computational perspective on Pd-catalyzed C-C cross-coupling reaction mechanisms. , 2013, Accounts of chemical research.

[81]  J. Hartwig Carbon–heteroatom bond formation catalysed by organometallic complexes , 2008, Nature.

[82]  S. Buchwald,et al.  Asymmetric Hydroarylation of Vinylarenes Using a Synergistic Combination of CuH and Pd Catalysis , 2016, Journal of the American Chemical Society.