The Eigenvalue Problem for Caputo Type Fractional Differential Equation with Riemann-Stieltjes Integral Boundary Conditions

<jats:p>In this paper, we investigate the eigenvalue problem for Caputo fractional differential equation with Riemann-Stieltjes integral boundary conditions <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:msubsup><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mprescripts /><mml:none /><mml:mrow><mml:mi>c</mml:mi></mml:mrow></mml:mmultiscripts></mml:mrow><mml:mrow><mml:mn mathvariant="normal">0</mml:mn><mml:mo>+</mml:mo></mml:mrow><mml:mrow><mml:mi>θ</mml:mi></mml:mrow></mml:msubsup><mml:mi>p</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>y</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>+</mml:mo><mml:mi>μ</mml:mi><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>p</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>y</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo stretchy="false">)</mml:mo><mml:mo>=</mml:mo><mml:mn mathvariant="normal">0</mml:mn></mml:math>, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mi>y</mml:mi><mml:mo>∈</mml:mo><mml:mo stretchy="false">[</mml:mo><mml:mn mathvariant="normal">0,1</mml:mn><mml:mo stretchy="false">]</mml:mo></mml:math>, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mi>p</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">0</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo>=</mml:mo><mml:msup><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">′</mml:mi><mml:mi mathvariant="normal">′</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">0</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo>=</mml:mo><mml:mn mathvariant="normal">0</mml:mn></mml:math>, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mi>p</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">1</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo>=</mml:mo><mml:mrow><mml:msubsup><mml:mo stretchy="false">∫</mml:mo><mml:mrow><mml:mn mathvariant="normal">0</mml:mn></mml:mrow><mml:mrow><mml:mn mathvariant="normal">1</mml:mn></mml:mrow></mml:msubsup><mml:mrow><mml:mi>p</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>y</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mi>d</mml:mi><mml:mi>A</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>y</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math>, where <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mml:mrow><mml:msubsup><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mprescripts /><mml:none /><mml:mrow><mml:mi>c</mml:mi></mml:mrow></mml:mmultiscripts></mml:mrow><mml:mrow><mml:mn mathvariant="normal">0</mml:mn><mml:mo>+</mml:mo></mml:mrow><mml:mrow><mml:mi>θ</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:math> is Caputo fractional derivative, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M6"><mml:mi>θ</mml:mi><mml:mo>∈</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">2,3</mml:mn><mml:mo stretchy="false">]</mml:mo></mml:math>, and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M7"><mml:mi>f</mml:mi><mml:mo>:</mml:mo><mml:mo stretchy="false">[</mml:mo><mml:mn mathvariant="normal">0,1</mml:mn><mml:mo stretchy="false">]</mml:mo><mml:mo>×</mml:mo><mml:mo stretchy="false">[</mml:mo><mml:mn mathvariant="normal">0</mml:mn><mml:mo>,</mml:mo><mml:mo>+</mml:mo><mml:mi mathvariant="normal">∞</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>→</mml:mo><mml:mo stretchy="false">[</mml:mo><mml:mn mathvariant="normal">0</mml:mn><mml:mo>,</mml:mo><mml:mo>+</mml:mo><mml:mi mathvariant="normal">∞</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> is continuous. By using the Guo-Krasnoselskii’s fixed point theorem on cone and the properties of the Green’s function, some new results on the existence and nonexistence of positive solutions for the fractional differential equation are obtained.</jats:p>

[1]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[2]  Chuanzhi Bai,et al.  Triple positive solutions for a boundary value problem of nonlinear fractional differential equation , 2008 .

[3]  Alberto Cabada,et al.  An Existence Result for Nonlinear Fractional Differential Equations on Banach Spaces , 2009 .

[4]  R. Agarwal,et al.  A Survey on Existence Results for Boundary Value Problems of Nonlinear Fractional Differential Equations and Inclusions , 2010 .

[5]  Rahmat Ali Khan,et al.  Existence and uniqueness of solutions for multi-point boundary value problems for fractional differential equations , 2010, Appl. Math. Lett..

[6]  Christopher S. Goodrich,et al.  Existence of a positive solution to a class of fractional differential equations , 2010, Applied Mathematics Letters.

[7]  Zhanbing Bai,et al.  On positive solutions of a nonlocal fractional boundary value problem , 2010 .

[8]  A. Guezane-Lakoud,et al.  Positive Solution to a Fractional Boundary Value Problem , 2011 .

[9]  Yonghong Wu,et al.  Positive solutions to singular fractional differential system with coupled boundary conditions , 2013, Commun. Nonlinear Sci. Numer. Simul..

[10]  Alberto Cabada,et al.  Nonlinear fractional differential equations with integral boundary value conditions , 2014, Appl. Math. Comput..

[11]  Lishan Liu,et al.  The Existence of Solutions for Four-Point Coupled Boundary Value Problems of Fractional Differential Equations at Resonance , 2014 .

[12]  Thomas Bieske The $\infty(x)$-equation in Grushin-type Spaces , 2015 .

[13]  Lishan Liu,et al.  The unique solution of a class of sum mixed monotone operator equations and its application to fractional boundary value problems , 2016 .

[14]  Lishan Liu,et al.  Existence of positive solutions for singular fractional differential equations with infinite-point boundary conditions , 2016 .

[15]  N. Kosmatov,et al.  Resonant functional problems of fractional order , 2016 .

[16]  SHUO ZHANG,et al.  MONOTONE ITERATIVE METHOD FOR FRACTIONAL DIFFERENTIAL EQUATIONS , 2016 .

[17]  Tatjana V. Tomovic,et al.  The existence of a positive solution for nonlinear fractional differential equations with integral boundary value conditions , 2016 .

[18]  Yujun Cui,et al.  Monotone iterative technique for nonlinear boundary value problems of fractional order p∈(2,3]$p\in(2,3]$ , 2017 .

[19]  Yansheng Liu,et al.  Existence result for a class of coupled fractional differential systems with integral boundary value conditions , 2017 .

[20]  Yansheng Liu,et al.  Existence of Solutions for a Class of Coupled Fractional Differential Systems with Nonlocal Boundary Conditions , 2017 .

[21]  Lishan Liu,et al.  Positive solutions for a system of nonlinear fractional nonlocal boundary value problems with parameters and p-Laplacian operator , 2017 .

[22]  Guoping He,et al.  On the uniqueness of solutions for a class of fractional differential equations , 2017, Appl. Math. Lett..

[23]  Lishan Liu,et al.  Existence results for impulsive fractional integro-differential equation of mixed type with constant coefficient and antiperiodic boundary conditions , 2017, Boundary Value Problems.

[24]  G. He,et al.  The Existence of Solutions to Integral Boundary Value Problems of Fractional Differential Equations at Resonance , 2017 .

[25]  Xingqiu Zhang,et al.  Triple positive solutions for nonlocal fractional differential equations with singularities both on time and space variables , 2018, Appl. Math. Lett..

[26]  Nikolaos S. Papageorgiou,et al.  Existence of positive solutions for nonlinear dirichlet problems with gradient dependence and arbitrary growth , 2018 .

[27]  Yonghong Wu,et al.  Existence and uniqueness of solutions for systems of fractional differential equations with Riemann–Stieltjes integral boundary condition , 2018, Advances in Difference Equations.

[28]  Xinzhu Meng,et al.  Extinction and stationary distribution of an impulsive stochastic chemostat model with nonlinear perturbation , 2018 .

[29]  G. He,et al.  A Fixed Point Theorem for Systems of Nonlinear Operator Equations and Applications to $$(p_1, p_2)$$(p1,p2)-Laplacian System , 2018 .

[30]  Xinwei Su,et al.  Uniqueness theorem of differential system with coupled integral boundary conditions , 2018 .

[31]  Lishan Liu,et al.  The existence and nonexistence of entire large solutions for a quasilinear Schrödinger elliptic system by dual approach , 2018, Appl. Math. Lett..

[32]  Yujun Cui,et al.  Positive Solutions for Boundary Value Problems of Fractional Differential Equation with Integral Boundary Conditions , 2018 .

[33]  Yonghong Wu,et al.  Existence and nonexistence of blow-up solutions for a Schrödinger equation involving a nonlinear operator , 2018, Appl. Math. Lett..

[34]  Xinwei Su,et al.  New uniqueness results for boundary value problem of fractional differential equation , 2018 .

[35]  Jiqiang Jiang,et al.  Positive solutions to singular Dirichlet-type boundary value problems of nonlinear fractional differential equations , 2018 .

[36]  Lishan Liu,et al.  The convergence analysis and error estimation for unique solution of a p-Laplacian fractional differential equation with singular decreasing nonlinearity , 2018, Boundary Value Problems.

[37]  Hongwei Yang,et al.  A new ZK–BO equation for three-dimensional algebraic Rossby solitary waves and its solution as well as fission property , 2018 .