An Appalachian Amazon? Magnetofossil evidence for the development of a tropical river-like system in the mid-Atlantic United States during the Paleocene-Eocene thermal maximum

On the mid-Atlantic Coastal Plain of the United States, Paleocene sands and silts are replaced during the Paleocene-Eocene Thermal Maximum (PETM) by the kaolinite-rich Marlboro Clay. The clay preserves abundant magnetite produced by magnetotactic bacteria and novel, presumptively eukaryotic, iron-biomineralizing microorganisms. Using ferromagnetic resonance spectroscopy and electron microscopy, we map the magnetofossil distribution in the context of stratigraphy and carbon isotope data and identify three magnetic facies in the clay: one characterized by a mix of detrital particles and magnetofossils, a second with a higher magnetofossil-to-detrital ratio, and a third with only transient magnetofossils. The distribution of these facies suggests that suboxic conditions promoting magnetofossil production and preservation occurred throughout inner middle neritic sediments of the Salisbury Embayment but extended only transiently to outer neritic sediments and the flanks of the embayment. Such a distribution is consistent with the development of a system resembling a modern tropical river-dominated shelf.

[1]  M. Ardelan,et al.  Ocean acidification affects iron speciation in seawater , 2009 .

[2]  Dirk Schumann,et al.  Gigantism in unique biogenic magnetite at the Paleocene–Eocene Thermal Maximum , 2008, Proceedings of the National Academy of Sciences.

[3]  R. E. Dodge,et al.  Studies in Geology , 2008 .

[4]  M. Ganerød,et al.  Reassembling the Paleogene–Eocene North Atlantic igneous province: New paleomagnetic constraints from the Isle of Mull, Scotland , 2008 .

[5]  N. Simmons,et al.  Dynamic topography and long-term sea-level variations: There is no such thing as a stable continental platform , 2008 .

[6]  M. Kominz,et al.  Late Cretaceous to Miocene sea‐level estimates from the New Jersey and Delaware coastal plain coreholes: an error analysis , 2008 .

[7]  J. Zachos,et al.  North American continental margin records of the Paleocene‐Eocene thermal maximum: Implications for global carbon and hydrological cycling , 2008 .

[8]  Christopher T. Baumgartner,et al.  Rapid, precise, and high‐sensitivity acquisition of paleomagnetic and rock‐magnetic data: Development of a low‐noise automatic sample changing system for superconducting rock magnetometers , 2008 .

[9]  R. Müller,et al.  Long-Term Sea-Level Fluctuations Driven by Ocean Basin Dynamics , 2008, Science.

[10]  Jeffery R. Scott,et al.  Tropical Cyclone–Induced Upper-Ocean Mixing and Climate: Application to Equable Climates , 2008 .

[11]  G. Dickens Palaeoclimate: The riddle of the clays , 2008 .

[12]  Gerald R. Dickens,et al.  An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics , 2008, Nature.

[13]  G. Dickens,et al.  Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary , 2007, Nature.

[14]  R. Kopp,et al.  Magnetofossil spike during the Paleocene-Eocene thermal maximum: Ferromagnetic resonance, rock magnetic, and electron microscopy evidence from Ancora, New Jersey, United States , 2007 .

[15]  J. Zachos,et al.  A biogenic origin for anomalous fine‐grained magnetic material at the Paleocene‐Eocene boundary at Wilson Lake, New Jersey , 2007 .

[16]  J. Zachos,et al.  On the duration of the Paleocene‐Eocene thermal maximum (PETM) , 2007 .

[17]  M. Greff-Lefftz,et al.  A new global Paleocene-Eocene apparent polar wandering path loop by "stacking" magnetostratigraphies: Correlations with high latitude climatic data , 2007 .

[18]  G. Dickens,et al.  Multiple early Eocene hyperthermals: Their sedimentary expression on the New Zealand continental margin and in the deep sea , 2007 .

[19]  J. Galster Natural and anthropogenic influences on the scaling of discharge with drainage area for multiple watersheds , 2007 .

[20]  Robert E. Kopp,et al.  Sedimentary Iron Cycling and the Origin and Preservation of Magnetization in Platform Carbonate Muds, Andros Island, Bahamas , 2007 .

[21]  Stefan Schouten,et al.  The Paleocene Eocene carbon isotope excursion in higher plant organic matter: Differential fractionation of angiosperms and conifers in the Arctic , 2007 .

[22]  M. Storey,et al.  Paleocene-Eocene Thermal Maximum and the Opening of the Northeast Atlantic , 2007, Science.

[23]  B. Schmitz,et al.  Abrupt increase in seasonal extreme precipitation at the Paleocene-Eocene boundary , 2007 .

[24]  F. Tateo,et al.  Mode and tempo of the Paleocene-Eocene thermal maximum in an expanded section from the Venetian pre-Alps , 2007 .

[25]  R. Kopp,et al.  Ferromagnetic resonance spectroscopy for assessment of magnetic anisotropy and magnetostatic interactions: A case study of mutant magnetotactic bacteria , 2006 .

[26]  N. Blair,et al.  Carbon remineralization in the Amazon–Guianas tropical mobile mudbelt: A sedimentary incinerator , 2006 .

[27]  J. Zachos,et al.  Extreme warming of mid-latitude coastal ocean during the Paleocene-Eocene Thermal Maximum: Inferences from TEX86 and isotope data , 2006 .

[28]  P. Bown,et al.  Stratigraphy and sedimentology of the Upper Cretaceous to Paleogene Kilwa Group, southern coastal Tanzania , 2006 .

[29]  Robert E. Kopp,et al.  Chains, clumps, and strings: Magnetofossil taphonomy with ferromagnetic resonance spectroscopy , 2006 .

[30]  D. Schrag,et al.  Beyond methane: Towards a theory for the Paleocene-Eocene Thermal Maximum , 2006 .

[31]  R. Thunell,et al.  Modelling river discharge and precipitation from estuarine salinity in the northern Chesapeake Bay: application to Holocene palaeoclimate , 2006 .

[32]  L. Sloan,et al.  Eocene hyperthermal event offers insight into greenhouse warming , 2006 .

[33]  B. Moskowitz,et al.  Depth Distribution of Magnetofossils in Near-Surface Sediments From the Blake/Bahama Outer Ridge, Western North Atlantic Ocean, Determined by Low-Temperature Magnetism , 2006 .

[34]  B. Toman,et al.  New Guidelines for δ13C Measurements , 2006 .

[35]  B. S. Cramer,et al.  Bolide summer: The Paleocene/Eocene thermal maximum as a response to an extraterrestrial trigger , 2005 .

[36]  M. Kominz,et al.  Late Cretaceous and Cenozoic sea‐level estimates: backstripping analysis of borehole data, onshore New Jersey , 2004 .

[37]  R. Aller,et al.  Coupling of early diagenetic processes and sedimentary dynamics in tropical shelf environments: the Gulf of Papua deltaic complex , 2004 .

[38]  F. Baltzer,et al.  Coupling between sedimentary dynamics, early diagenetic processes, and biogeochemical cycling in the Amazon–Guianas mobile mud belt: coastal French Guiana , 2004 .

[39]  R. Kopp,et al.  Ferromagnetic resonance and low-temperature magnetic tests for biogenic magnetite , 2004 .

[40]  A. Malthe-Sørenssen,et al.  Release of methane from a volcanic basin as a mechanism for initial Eocene global warming , 2004, Nature.

[41]  J. Zachos,et al.  Early Cenozoic decoupling of the global carbon and sulfur cycles , 2003 .

[42]  B. Schmitz,et al.  Sea-level, humidity, and land-erosion records across the initial Eocene thermal maximum from a continental-marine transect in northern Spain , 2003 .

[43]  J. Wright,et al.  A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion , 2003 .

[44]  K. Rogers,et al.  The Apectodinium acme and terrestrial discharge during the Paleocene–Eocene thermal maximum: new palynological, geochemical and calcareous nannoplankton observations at Tawanui, New Zealand , 2003 .

[45]  K. Farley,et al.  An alternative age model for the Paleocene–Eocene thermal maximum using extraterrestrial 3He , 2003 .

[46]  K. Miller,et al.  Detection of Late Cretaceous and Cenozoic sequence boundaries on the Atlantic coastal plain using core log integration of magnetic susceptibility and natural gamma ray measurements at Ancora, New Jersey , 2002 .

[47]  P. Riisager,et al.  New paleomagnetic pole and magnetostratigraphy of Faroe Islands flood volcanics, North Atlantic igneous province , 2002 .

[48]  M. L. Wade,et al.  Presence of an iron‐rich nanophase material in the upper layer of the Cretaceous‐Tertiary boundary clay , 2001 .

[49]  A. Pardo,et al.  Climatic evolution on the southeastern margin of the Tethys (Negev, Israel) from the Palaeocene to the early Eocene: focus on the late Palaeocene thermal maximum , 2000, Journal of the Geological Society.

[50]  T. Onstott,et al.  Mineral transformations associated with the microbial reduction of magnetite , 2000 .

[51]  L. Bybell,et al.  Stratigraphic and climatic implications of clay mineral changes around the Paleocene/Eocene boundary of the northeastern US margin , 2000 .

[52]  Dalton,et al.  Bass River Site , 1998 .

[53]  R. Aller Mobile deltaic and continental shelf muds as suboxic, fluidized bed reactors , 1998 .

[54]  M. Brandon,et al.  Macrogeomorphic evolution of the post-Triassic Appalachian mountains determined by deconvolution of the offshore basin sedimentary record , 1996 .

[55]  R. M. Owen,et al.  Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene , 1995 .

[56]  K. Nealson,et al.  Dissolution and reduction of magnetite by bacteria. , 1995, Environmental science & technology.

[57]  J. Hedges,et al.  Sedimentary organic matter preservation: an assessment and speculative synthesis , 1995 .

[58]  I. Snowball Bacterial magnetite and the magnetic properties of sediments in a Swedish lake , 1994 .

[59]  J. Tarduno Temporal trends of magnetic dissolution in the pelagic realm: gauging paleoproductivity? , 1994 .

[60]  J. Kennett,et al.  Antarctic subtropical humid episode at the Paleocene-Eocene boundary: Clay-mineral evidence , 1994 .

[61]  C. Poag,et al.  A record of Appalachian denudation in postrift Mesozoic and Cenozoic sedimentary deposits of the U.S. Middle Atlantic continental margin , 1989 .

[62]  Hojatollah Vali,et al.  Fossil bacterial magnetite in deep-sea sediments from the South Atlantic Ocean , 1986, Nature.

[63]  R. H. Meade,et al.  Storage and Remobilization of Suspended Sediment in the Lower Amazon River of Brazil , 1985, Science.

[64]  Lee Kennett,et al.  For the Duration , 1985 .

[65]  D. DeMaster,et al.  Variations of Sediment Texture on the Amazon Continental Shelf , 1983 .

[66]  N. Frederiksen Paleogene sporomorph biostratigraphy, Northeastern Virginia , 1979 .

[67]  J. Schubel,et al.  Suspended sediment discharge of the Susquehanna river to Northern Chesapeake Bay, 1966 to 1976 , 1978 .

[68]  J. Damuth,et al.  Relict magnesian calcite oolite and subsidence of the Amazon shelf , 1977 .

[69]  J. Milliman Relict magnesian calcite oolite and subsidence of the Amazon shelf: reply , 1975 .

[70]  R. Gibbs The Geochemistry of the Amazon River System: Part I. The Factors that Control the Salinity and the Composition and Concentration of the Suspended Solids , 1967 .

[71]  T. G. Gibson Stratigraphy and Paleoenvironment of the Phosphatic Miocene Strata of North Carolina , 1967 .

[72]  J. J. Groot,et al.  SOME ASPECTS OF THE MINERALOGY OF THE NORTHERN ATLANTIC COASTAL PLAIN , 1958 .

[73]  R. Kopp,et al.  The identification and biogeochemical interpretation of fossil magnetotactic bacteria , 2008 .

[74]  Andrew A. Kulpecz,et al.  6. SEA GIRT SITE , 2006 .

[75]  G. Dickens,et al.  Comment on ''A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion'' by D.V. Kent et al. (Earth Planet. Sci. Lett. 211 (2003) 13^26) , 2004 .

[76]  D. Powars The effects of the Chesapeake Bay impact crater on the geologic framework and the correlation of hydrogeologic units of southeastern Virginia, south of the James River , 2000 .

[77]  Bruce T. Scott,et al.  The effects of the Chesapeake Bay impact crater on the geological framework and correlation of hydrogeologic units of the lower York-James Peninsula, Virginia , 1999 .

[78]  N. Blair,et al.  Sulfur diagenesis and burial on the Amazon shelf: Major control by physical sedimentation processes , 1996 .

[79]  M. Allison,et al.  The geological record preserved by Amazon shelf sedimentation , 1996 .

[80]  N. Blair,et al.  Remineralization rates, recycling, and storage of carbon in Amazon shelf sediments , 1996 .

[81]  D. DeMaster,et al.  The Amazon shelf setting: tropical, energetic, and influenced by a large river , 1996 .

[82]  L. Bybell,et al.  Sedimentary patterns across the Paleocene-Eocene boundary in the Atlantic and Gulf Coastal Plains of the United States , 1994 .

[83]  E. Emmons,et al.  Geological Survey , 1993, Nature.

[84]  D. DeMaster,et al.  Nature of sediment accumulation on the Amazon continental shelf , 1986 .

[85]  D. J. Cederstorm Structural Geology of Southeastern Virginia , 1945 .