The combination of meltblown and electrospinning for bone tissue engineering
暂无分享,去创建一个
David Lukas | Eva Prosecká | Ondrej Novak | J. Erben | J. Chvojka | D. Lukas | E. Kostakova | V. Jenčová | Jiri Chvojka | E. Prosecká | Petr Mikes | Katerina Pilarova | Jakub Erben | Filip Sanetrnik | Vera Jencova | Lenka Blazkova | Jiri Havlicek | Eva Kostakova | K. Pilařová | J. Havlíček | Lenka Blažková | F. Sanetrník | P. Mikeš | O. Novak | Filip Sanetrník
[1] B. Shi,et al. Enhanced Mineralization of PLA Meltblown Materials Due to Plasticization , 2010 .
[2] F. Ko,et al. Biomedical applications of nanofibers , 2011 .
[3] G. Wnek,et al. Encyclopedia of biomaterials and biomedical engineering , 2008 .
[4] Xingyu Jiang,et al. Recent advances in electrospinning technology and biomedical applications of electrospun fibers. , 2014, Journal of materials chemistry. B.
[5] A. Mikos,et al. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. , 2006, Tissue engineering.
[6] P. Kochová,et al. Elastic three‐dimensional poly (ε‐caprolactone) nanofibre scaffold enhances migration, proliferation and osteogenic differentiation of mesenchymal stem cells , 2013, Cell proliferation.
[7] H. Kim,et al. Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly(lactic acid) for bone regeneration. , 2006, Journal of biomedical materials research. Part A.
[8] D. Kaplan,et al. Porosity of 3D biomaterial scaffolds and osteogenesis. , 2005, Biomaterials.
[9] H. Ohgushi,et al. BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. , 1998, Journal of biomedical materials research.
[10] Yanbo Liu,et al. Preliminary study on fiber splitting of bicomponent meltblown fibers , 2004 .
[11] J. L. Gomez Ribelles,et al. Poly(ɛ-caprolactone) Electrospun Scaffolds Filled with Nanoparticles. Production and Optimization According to Taguchi's Methodology , 2014 .
[12] J. Chvojka,et al. Cell penetration to nanofibrous scaffolds , 2014, Cell adhesion & migration.
[13] S F Hulbert,et al. Potential of ceramic materials as permanently implantable skeletal prostheses. , 1970, Journal of biomedical materials research.
[14] S. Ramakrishna,et al. Mimicking nanofibrous hybrid bone substitute for mesenchymal stem cells differentiation into osteogenesis. , 2013, Macromolecular bioscience.
[15] Yun-Ze Long,et al. Advances in three-dimensional nanofibrous macrostructures via electrospinning , 2014 .
[16] Satish Kumar,et al. Meltblown fibers: Influence of viscosity and elasticity on diameter distribution , 2010 .
[17] Stephen J. Russell,et al. Handbook of Nonwovens , 2007 .
[18] Benjamin Chu,et al. Functional electrospun nanofibrous scaffolds for biomedical applications. , 2007, Advanced drug delivery reviews.