On the hausdorff and other cluster Voronoi diagrams

The Voronoi diagram is a fundamental geometric structure that encodes proximity information. Given a set of geometric objects, called sites, their Voronoi diagram is a subdivision of the underlying space into maximal regions, such that all points within one region have the same nearest site. Problems in diverse application domains (such as VLSI CAD, robotics, facility location, etc.) demand various generalizations of this simple concept. While many generalized Voronoi diagrams have been well studied, many others still have unsettled questions. An example of the latter are cluster Voronoi diagrams, whose sites are sets (clusters) of objects rather than individual objects. In this dissertation we study certain cluster Voronoi diagrams from the perspective of their construction algorithms and algorithmic applications. Our main focus is the Hausdorff Voronoi diagram; we also study the farthest-segment Voronoi diagram, as well as certain special cases of the farthest-color Voronoi diagram. We establish a connection between cluster Voronoi diagrams and the stabbing circle problem for segments in the plane. Our results are as follows. (1) We investigate the randomized incremental construction of the Hausdorff Voronoi diagram. We consider separately the case of non-crossing clusters, when the combinatorial complexity of the diagram is O(n) where n is the total number of points in all clusters. For this case, we present two construction algorithms that require O(n log2 n) expected time. For the general case of arbitrary clusters, we present an algorithm that requires O((m+n logn) logn) expected time and O(m+ n logn) expected space, where m is a parameter reflecting the number of crossings between clusters’ convex hulls. (2) We present an O(n) time algorithm to construct the farthest-segment Voronoi diagram of n segments, after the sequence of its faces at infinity is known. This augments the well-known linear-time framework for Voronoi diagram of points in convex position, with the ability to handle disconnected Voronoi regions. (3) We establish a connection between the cluster Voronoi diagrams (the Hausdorff and the farthest-color Voronoi diagram) and the stabbing circle problem. This implies a new method to solve the latter problem. Our method results in a near-

[1]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[2]  Nimrod Megiddo,et al.  An O(n log2 n) Algorithm for the k-th Longest Path in a Tree with Applications to Location Problems , 1981, SIAM J. Comput..

[3]  Arnold L. Rosenberg,et al.  Stabbing line segments , 1982, BIT.

[4]  Der-Tsai Lee On k-Nearest Neighbor Voronoi Diagrams in the Plane , 1982, IEEE Transactions on Computers.

[5]  David G. Kirkpatrick,et al.  Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..

[6]  L. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi , 1985, TOGS.

[7]  Bernard Chazelle,et al.  The power of geometric duality , 1985, BIT Comput. Sci. Sect..

[8]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[9]  Raimund Seidel,et al.  Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..

[10]  Leonidas J. Guibas,et al.  Optimal Point Location in a Monotone Subdivision , 1986, SIAM J. Comput..

[11]  Herbert Edelsbrunner,et al.  Computing a Ham-Sandwich Cut in Two Dimensions , 1986, J. Symb. Comput..

[12]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[13]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[14]  Micha Sharir,et al.  A Survey of Motion Planning and Related Geometric Algorithms , 1988, Artificial Intelligence.

[15]  Leonidas J. Guibas,et al.  The upper envelope of piecewise linear functions: Algorithms and applications , 2015, Discret. Comput. Geom..

[16]  Leonidas J. Guibas,et al.  A linear-time algorithm for computing the voronoi diagram of a convex polygon , 1989, Discret. Comput. Geom..

[17]  Rolf Klein,et al.  Concrete and Abstract Voronoi Diagrams , 1990, Lecture Notes in Computer Science.

[18]  William Pugh,et al.  Skip Lists: A Probabilistic Alternative to Balanced Trees , 1989, WADS.

[19]  David Avis,et al.  Lower Bounds for Line Stabbing , 1989, Inf. Process. Lett..

[20]  Kurt Mehlhorn,et al.  On the Construction of Abstract Voronoi Diagrams , 1990, STACS.

[21]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[22]  Kurt Mehlhorn,et al.  Dynamic point location in general subdivisions , 1992, SODA '92.

[23]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[24]  Mariette Yvinec,et al.  Applications of random sampling to on-line algorithms in computational geometry , 1992, Discret. Comput. Geom..

[25]  Kurt Mehlhorn,et al.  Four Results on Randomized Incremental Constructions , 1992, Comput. Geom..

[26]  Micha Sharir,et al.  The upper envelope of voronoi surfaces and its applications , 1993, Discret. Comput. Geom..

[27]  L. Kucera,et al.  Randomized incremental construction of abstract Voronoi diagrams , 1993 .

[28]  Andrzej Lingas,et al.  Hamiltonian Abstract Voronoi Diagrams in Linear Time , 1994, ISAAC.

[29]  Raimund Seidel,et al.  The Nature and Meaning of Perturbations in Geometric Computing , 1994, STACS.

[30]  Ketan Mulmuley,et al.  Computational geometry : an introduction through randomized algorithms , 1993 .

[31]  Mark H. Overmars,et al.  On a Class of O(n2) Problems in Computational Geometry , 1995, Comput. Geom..

[32]  Otfried Cheong,et al.  The Voronoi Diagram of Curved Objects , 1995, SCG '95.

[33]  Olivier Devillers,et al.  An Introduction to Randomization in Computational Geometry , 1996, Theor. Comput. Sci..

[34]  Jorge Urrutia,et al.  A combinatorial property of convex sets , 1997, Discret. Comput. Geom..

[35]  Francis Y. L. Chin,et al.  Finding the Medial Axis of a Simple Polygon in Linear Time , 1995, ISAAC.

[36]  D. T. Lee,et al.  Critical area computation via Voronoi diagrams , 1999, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[37]  Evanthia Papadopoulou Critical area computation for missing material defects in VLSI circuits , 2000, ISPD '00.

[38]  Kurt Mehlhorn,et al.  Furthest Site Abstract Voronoi Diagrams , 2001, Int. J. Comput. Geom. Appl..

[39]  Rolf Klein,et al.  The Farthest Color Voronoi Diagram and Related Problems , 2001 .

[40]  Olivier Devillers,et al.  The Delaunay Hierarchy , 2002, Int. J. Found. Comput. Sci..

[41]  Mariette Yvinec,et al.  The Voronoi Diagram of Planar Convex Objects , 2003, ESA.

[42]  Evanthia Papadopoulou,et al.  The Hausdorff Voronoi Diagram of Point Clusters in the Plane , 2003, Algorithmica.

[43]  M. Aguas Problemas Geométricos en Morfología Computacional , 2004 .

[44]  D. T. Lee,et al.  The hausdorff voronoi diagram of polygonal objects: a divide and conquer approach , 2004, Int. J. Comput. Geom. Appl..

[45]  Leonidas J. Guibas,et al.  Ray shooting in polygons using geodesic triangulations , 1991, Algorithmica.

[46]  J.D. Hibbeler,et al.  Measurement and reduction of critical area using Voronoi diagrams , 2005, IEEE/SEMI Conference and Workshop on Advanced Semiconductor Manufacturing 2005..

[47]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[48]  Leonidas J. Guibas,et al.  Randomized incremental construction of Delaunay and Voronoi diagrams , 1990, Algorithmica.

[49]  Data Structures for Halfplane Proximity Queries and Incremental Voronoi Diagrams , 2006, LATIN.

[50]  Franz Aurenhammer,et al.  Farthest line segment Voronoi diagrams , 2006, Inf. Process. Lett..

[51]  Anil Maheshwari,et al.  A Coarse Grained Parallel Algorithm for Hausdorff Voronoi Diagrams , 2006, 2006 International Conference on Parallel Processing (ICPP'06).

[52]  J. Boissonnat,et al.  Curved Voronoi diagrams , 2006 .

[53]  Loukas Georgiadis,et al.  Improved Dynamic Planar Point Location , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[54]  Puneet Gupta,et al.  Yield Analysis and Optimization , 2008, Handbook of Algorithms for Physical Design Automation.

[55]  Mercè Claverol,et al.  Stabbers of line segments in the plane , 2011, Comput. Geom..

[56]  Evanthia Papadopoulou,et al.  Net-Aware Critical Area Extraction for Opens in VLSI Circuits Via Higher-Order Voronoi Diagrams , 2011, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[57]  Franz Aurenhammer,et al.  Voronoi Diagrams and Delaunay Triangulations , 2013 .

[58]  Lei Xu,et al.  Map of Geometric Minimal Cuts with Applications , 2013 .

[59]  Evanthia Papadopoulou,et al.  On the Farthest Line-Segment Voronoi Diagram , 2013, Int. J. Comput. Geom. Appl..

[60]  János Pach New Trends in Discrete and Computational Geometry , 2013 .

[61]  Cecilia Bohler,et al.  Forest-Like Abstract Voronoi Diagrams in Linear Time , 2018, CCCG.

[62]  Evanthia Papadopoulou,et al.  The Higher-Order Voronoi Diagram of Line Segments , 2014, Algorithmica.

[63]  Cecilia Bohler,et al.  On the Complexity of Higher Order Abstract Voronoi Diagrams , 2013, ICALP.

[64]  Jinhui Xu,et al.  The L∞ Hausdorff Voronoi Diagram Revisited , 2015, Int. J. Comput. Geom. Appl..

[65]  Matias Korman,et al.  Stabbing segments with rectilinear objects , 2015, FCT.

[66]  Stefan Langerman,et al.  A Randomized Incremental Algorithm for the Hausdorff Voronoi Diagram of Non-crossing Clusters , 2013, Algorithmica.

[67]  Mercè Claverol Aguas,et al.  Stabbing circles for some sets of Delaunay segments , 2016, EuroCG 2016.

[68]  Elena Khramtcova,et al.  Randomized Incremental Construction for the Hausdorff Voronoi Diagram of point clusters , 2016, ArXiv.

[69]  Evanthia Papadopoulou,et al.  Stabbing Circles for Sets of Segments in the Plane , 2017, Algorithmica.