On the hausdorff and other cluster Voronoi diagrams
暂无分享,去创建一个
[1] Michael Ian Shamos,et al. Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).
[2] Nimrod Megiddo,et al. An O(n log2 n) Algorithm for the k-th Longest Path in a Tree with Applications to Location Problems , 1981, SIAM J. Comput..
[3] Arnold L. Rosenberg,et al. Stabbing line segments , 1982, BIT.
[4] Der-Tsai Lee. On k-Nearest Neighbor Voronoi Diagrams in the Plane , 1982, IEEE Transactions on Computers.
[5] David G. Kirkpatrick,et al. Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..
[6] L. Guibas,et al. Primitives for the manipulation of general subdivisions and the computation of Voronoi , 1985, TOGS.
[7] Bernard Chazelle,et al. The power of geometric duality , 1985, BIT Comput. Sci. Sect..
[8] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[9] Raimund Seidel,et al. Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..
[10] Leonidas J. Guibas,et al. Optimal Point Location in a Monotone Subdivision , 1986, SIAM J. Comput..
[11] Herbert Edelsbrunner,et al. Computing a Ham-Sandwich Cut in Two Dimensions , 1986, J. Symb. Comput..
[12] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.
[13] Kenneth L. Clarkson,et al. Applications of random sampling in computational geometry, II , 1988, SCG '88.
[14] Micha Sharir,et al. A Survey of Motion Planning and Related Geometric Algorithms , 1988, Artificial Intelligence.
[15] Leonidas J. Guibas,et al. The upper envelope of piecewise linear functions: Algorithms and applications , 2015, Discret. Comput. Geom..
[16] Leonidas J. Guibas,et al. A linear-time algorithm for computing the voronoi diagram of a convex polygon , 1989, Discret. Comput. Geom..
[17] Rolf Klein,et al. Concrete and Abstract Voronoi Diagrams , 1990, Lecture Notes in Computer Science.
[18] William Pugh,et al. Skip Lists: A Probabilistic Alternative to Balanced Trees , 1989, WADS.
[19] David Avis,et al. Lower Bounds for Line Stabbing , 1989, Inf. Process. Lett..
[20] Kurt Mehlhorn,et al. On the Construction of Abstract Voronoi Diagrams , 1990, STACS.
[21] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[22] Kurt Mehlhorn,et al. Dynamic point location in general subdivisions , 1992, SODA '92.
[23] Atsuyuki Okabe,et al. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.
[24] Mariette Yvinec,et al. Applications of random sampling to on-line algorithms in computational geometry , 1992, Discret. Comput. Geom..
[25] Kurt Mehlhorn,et al. Four Results on Randomized Incremental Constructions , 1992, Comput. Geom..
[26] Micha Sharir,et al. The upper envelope of voronoi surfaces and its applications , 1993, Discret. Comput. Geom..
[27] L. Kucera,et al. Randomized incremental construction of abstract Voronoi diagrams , 1993 .
[28] Andrzej Lingas,et al. Hamiltonian Abstract Voronoi Diagrams in Linear Time , 1994, ISAAC.
[29] Raimund Seidel,et al. The Nature and Meaning of Perturbations in Geometric Computing , 1994, STACS.
[30] Ketan Mulmuley,et al. Computational geometry : an introduction through randomized algorithms , 1993 .
[31] Mark H. Overmars,et al. On a Class of O(n2) Problems in Computational Geometry , 1995, Comput. Geom..
[32] Otfried Cheong,et al. The Voronoi Diagram of Curved Objects , 1995, SCG '95.
[33] Olivier Devillers,et al. An Introduction to Randomization in Computational Geometry , 1996, Theor. Comput. Sci..
[34] Jorge Urrutia,et al. A combinatorial property of convex sets , 1997, Discret. Comput. Geom..
[35] Francis Y. L. Chin,et al. Finding the Medial Axis of a Simple Polygon in Linear Time , 1995, ISAAC.
[36] D. T. Lee,et al. Critical area computation via Voronoi diagrams , 1999, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[37] Evanthia Papadopoulou. Critical area computation for missing material defects in VLSI circuits , 2000, ISPD '00.
[38] Kurt Mehlhorn,et al. Furthest Site Abstract Voronoi Diagrams , 2001, Int. J. Comput. Geom. Appl..
[39] Rolf Klein,et al. The Farthest Color Voronoi Diagram and Related Problems , 2001 .
[40] Olivier Devillers,et al. The Delaunay Hierarchy , 2002, Int. J. Found. Comput. Sci..
[41] Mariette Yvinec,et al. The Voronoi Diagram of Planar Convex Objects , 2003, ESA.
[42] Evanthia Papadopoulou,et al. The Hausdorff Voronoi Diagram of Point Clusters in the Plane , 2003, Algorithmica.
[43] M. Aguas. Problemas Geométricos en Morfología Computacional , 2004 .
[44] D. T. Lee,et al. The hausdorff voronoi diagram of polygonal objects: a divide and conquer approach , 2004, Int. J. Comput. Geom. Appl..
[45] Leonidas J. Guibas,et al. Ray shooting in polygons using geodesic triangulations , 1991, Algorithmica.
[46] J.D. Hibbeler,et al. Measurement and reduction of critical area using Voronoi diagrams , 2005, IEEE/SEMI Conference and Workshop on Advanced Semiconductor Manufacturing 2005..
[47] Steven Fortune,et al. A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.
[48] Leonidas J. Guibas,et al. Randomized incremental construction of Delaunay and Voronoi diagrams , 1990, Algorithmica.
[49] Data Structures for Halfplane Proximity Queries and Incremental Voronoi Diagrams , 2006, LATIN.
[50] Franz Aurenhammer,et al. Farthest line segment Voronoi diagrams , 2006, Inf. Process. Lett..
[51] Anil Maheshwari,et al. A Coarse Grained Parallel Algorithm for Hausdorff Voronoi Diagrams , 2006, 2006 International Conference on Parallel Processing (ICPP'06).
[52] J. Boissonnat,et al. Curved Voronoi diagrams , 2006 .
[53] Loukas Georgiadis,et al. Improved Dynamic Planar Point Location , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[54] Puneet Gupta,et al. Yield Analysis and Optimization , 2008, Handbook of Algorithms for Physical Design Automation.
[55] Mercè Claverol,et al. Stabbers of line segments in the plane , 2011, Comput. Geom..
[56] Evanthia Papadopoulou,et al. Net-Aware Critical Area Extraction for Opens in VLSI Circuits Via Higher-Order Voronoi Diagrams , 2011, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
[57] Franz Aurenhammer,et al. Voronoi Diagrams and Delaunay Triangulations , 2013 .
[58] Lei Xu,et al. Map of Geometric Minimal Cuts with Applications , 2013 .
[59] Evanthia Papadopoulou,et al. On the Farthest Line-Segment Voronoi Diagram , 2013, Int. J. Comput. Geom. Appl..
[60] János Pach. New Trends in Discrete and Computational Geometry , 2013 .
[61] Cecilia Bohler,et al. Forest-Like Abstract Voronoi Diagrams in Linear Time , 2018, CCCG.
[62] Evanthia Papadopoulou,et al. The Higher-Order Voronoi Diagram of Line Segments , 2014, Algorithmica.
[63] Cecilia Bohler,et al. On the Complexity of Higher Order Abstract Voronoi Diagrams , 2013, ICALP.
[64] Jinhui Xu,et al. The L∞ Hausdorff Voronoi Diagram Revisited , 2015, Int. J. Comput. Geom. Appl..
[65] Matias Korman,et al. Stabbing segments with rectilinear objects , 2015, FCT.
[66] Stefan Langerman,et al. A Randomized Incremental Algorithm for the Hausdorff Voronoi Diagram of Non-crossing Clusters , 2013, Algorithmica.
[67] Mercè Claverol Aguas,et al. Stabbing circles for some sets of Delaunay segments , 2016, EuroCG 2016.
[68] Elena Khramtcova,et al. Randomized Incremental Construction for the Hausdorff Voronoi Diagram of point clusters , 2016, ArXiv.
[69] Evanthia Papadopoulou,et al. Stabbing Circles for Sets of Segments in the Plane , 2017, Algorithmica.