Diketopyrrolopyrrole-diketopyrrolopyrrole-based conjugated copolymer for high-mobility organic field-effect transistors.

In this communication, we report the synthesis of a novel diketopyrrolopyrrole-diketopyrrolopyrrole (DPP-DPP)-based conjugated copolymer and its application in high-mobility organic field-effect transistors. Copolymerization of DPP with DPP yields a copolymer with exceptional properties such as extended absorption characteristics (up to ~1100 nm) and field-effect electron mobility values of >1 cm(2) V(-1) s(-1). The synthesis of this novel DPP-DPP copolymer in combination with the demonstration of transistors with extremely high electron mobility makes this work an important step toward a new family of DPP-DPP copolymers for application in the general area of organic optoelectronics.

[1]  A. Facchetti,et al.  Dithienocoronenediimide‐Based Copolymers as Novel Ambipolar Semiconductors for Organic Thin‐Film Transistors , 2012, Advanced materials.

[2]  Aram Amassian,et al.  Solution‐Processed Small Molecule‐Polymer Blend Organic Thin‐Film Transistors with Hole Mobility Greater than 5 cm2/Vs , 2012, Advanced materials.

[3]  A. Heeger,et al.  High‐Performance Ambipolar Transistors and Inverters from an Ultralow Bandgap Polymer , 2012, Advanced materials.

[4]  Henning Sirringhaus,et al.  High‐Performance Ambipolar Diketopyrrolopyrrole‐Thieno[3,2‐b]thiophene Copolymer Field‐Effect Transistors with Balanced Hole and Electron Mobilities , 2012, Advanced materials.

[5]  A. Mohebbi,et al.  Emeraldicene as an Acceptor Moiety: Balanced‐Mobility, Ambipolar, Organic Thin‐Film Transistors , 2011, Advanced materials.

[6]  M. Baumgarten,et al.  Thiadiazoloquinoxaline-acetylene containing polymers as semiconductors in ambipolar field effect transistors. , 2011, Journal of the American Chemical Society.

[7]  N. Stingelin,et al.  Synthesis, Characterization, and Field Effect Transistor Properties of Regioregular Poly(3-alkyl-2,5-selenylenevinylene) , 2011 .

[8]  Hongzheng Chen,et al.  Diketo-pyrrolo-pyrrole-Based Medium Band Gap Copolymers for Efficient Plastic Solar Cells: Morphology, Transport, and Composition-Dependent Photovoltaic Behavior , 2011 .

[9]  R. Friend,et al.  Tunable charge transport using supramolecular self-assembly of nanostructured crystalline block copolymers. , 2011, ACS nano.

[10]  S. P. Tiwari,et al.  Self-Assembled Amphiphilic Diketopyrrolopyrrole-Based Oligothiophenes for Field-Effect Transistors and Solar Cells , 2011 .

[11]  F. Würthner,et al.  Synthesis and characterization of optical and redox properties of bithiophene-functionalized diketopyrrolopyrrole chromophores. , 2011, The Journal of organic chemistry.

[12]  H. Sirringhaus,et al.  Thieno[3,2-b]thiophene-diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. , 2011, Journal of the American Chemical Society.

[13]  P. Sonar,et al.  A Low‐Bandgap Diketopyrrolopyrrole‐Benzothiadiazole‐Based Copolymer for High‐Mobility Ambipolar Organic Thin‐Film Transistors , 2010, Advanced materials.

[14]  Prashant Sonar,et al.  A High Mobility P‐Type DPP‐Thieno[3,2‐b]thiophene Copolymer for Organic Thin‐Film Transistors , 2010, Advanced materials.

[15]  D. D. de Leeuw,et al.  Poly(diketopyrrolopyrrole-terthiophene) for ambipolar logic and photovoltaics. , 2009, Journal of the American Chemical Society.

[16]  Yang Yang,et al.  Bandgap and Molecular Level Control of the Low-Bandgap Polymers Based on 3,6-Dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione toward Highly Efficient Polymer Solar Cells , 2009 .

[17]  M. Leclerc,et al.  Synthesis and Characterization of New Low-Bandgap Diketopyrrolopyrrole-Based Copolymers , 2009 .

[18]  Yong Cao,et al.  Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. , 2009, Accounts of chemical research.

[19]  Gilles Horowitz,et al.  High‐Performance Organic Field‐Effect Transistors , 2009 .

[20]  Jianzhuang Jiang,et al.  Design, synthesis, characterization, and OFET properties of amphiphilic heteroleptic tris(phthalocyaninato) europium(III) complexes. The effect of crown ether hydrophilic substituents. , 2009, Inorganic chemistry.

[21]  Mm Martijn Wienk,et al.  Narrow‐Bandgap Diketo‐Pyrrolo‐Pyrrole Polymer Solar Cells: The Effect of Processing on the Performance , 2008 .

[22]  M. Turbiez,et al.  High‐Mobility Ambipolar Near‐Infrared Light‐Emitting Polymer Field‐Effect Transistors , 2008 .

[23]  Ullrich Scherf,et al.  Organic semiconductors for solution-processable field-effect transistors (OFETs). , 2008, Angewandte Chemie.

[24]  Rui Zhang,et al.  Novel Thiophene‐Thiazolothiazole Copolymers for Organic Field‐Effect Transistors , 2007 .

[25]  S. Jenekhe,et al.  Conjugated donor-acceptor copolymer semiconductors with large intramolecular charge transfer : Synthesis, optical properties, electrochemistry, and field effect carrier mobility of thienopyrazine-based copolymers , 2006 .

[26]  Shizuo Tokito,et al.  High performance n-type organic field-effect transistors based on pi-electronic systems with trifluoromethylphenyl groups. , 2005, Journal of the American Chemical Society.

[27]  Y. Yamashita,et al.  Characterization and Field-Effect Transistor Performance of Heterocyclic Oligomers Containing a Thiazolothiazole Unit , 2004 .

[28]  Jeong In Han,et al.  Organic Thin Film Transistor-Driven Liquid Crystal Displays on Flexible Polymer Substrate , 2004 .

[29]  Andrew J. Lovinger,et al.  Soluble Regioregular Polythiophene Derivatives as Semiconducting Materials for Field-Effect Transistors , 1999 .

[30]  Takakazu Yamamoto,et al.  Syntheses of New Alternating CT-Type Copolymers of Thiophene and Pyrido[3,4-b]pyrazine Units: Their Optical and Electrochemical Properties in Comparison with Similar CT Copolymers of Thiophene with Pyridine and Quinoxaline , 1999 .

[31]  Z. Hao,et al.  Some aspects of organic pigments , 1997 .

[32]  Y. Yamashita,et al.  New Narrow-Bandgap Polymer Composed of Benzobis(1,2,5-thiadiazole) and Thiophenes , 1995 .

[33]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[34]  Shinuk Cho,et al.  Swapping field-effect transistor characteristics in polymeric diketopyrrolopyrrole semiconductors: debut of an electron dominant transporting polymer , 2012 .

[35]  N. Stingelin,et al.  Low band gap selenophene–diketopyrrolopyrrole polymers exhibiting high and balanced ambipolar performance in bottom-gate transistors , 2012 .