Comparison of aerosol optical depth between CALIOP and MODIS‐Aqua for CALIOP aerosol subtypes over the ocean

The Cloud‐Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol optical depth (AOD) has been compared with the Moderate Resolution Imaging Spectroradiometer (MODIS)‐Aqua AOD using Level 2 products of both instruments. Such comparisons have been performed for five different aerosol subtypes classified by CALIOP algorithm, namely clean marine, dust, polluted dust, polluted continental, and biomass burning, over the ocean from June 2006 to December 2010. MODIS AOD at 550 nm (0.111 ± 0.079) for the collocated data pairs is about 63% higher than CALIOP AOD at 532 nm (0.068 ± 0.073). For clean marine, MODIS AOD (0.110 ± 0.064) is almost twice the CALIOP AOD (0.056 ± 0.038), and the difference between the AOD values has a strong latitude dependence likely related to the surface wind speed over the ocean. The difference in AOD for dust (13%) is observed to be the lowest among the five aerosol types under consideration, but it shows a slight regional variation. The discrepancy of AOD for dust also shows strong dependency on the layer mean of the particulate depolarization ratio. CALIOP AOD is higher than MODIS AOD for both polluted dust and polluted continental by 15% and 29%, respectively, for most of the ocean. One of the possible reasons for the difference is the misclassification of clean marine (or marine + dust) as polluted dust and polluted continental in the CALIOP algorithm. For biomass burning, uncertainty in the layer base altitude is thought to be one of the main reasons for the lower value of CALIOP AOD.

[1]  F. G. Fernald Analysis of atmospheric lidar observations: some comments. , 1984, Applied optics.

[2]  D. Tanré,et al.  Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances , 1997 .

[3]  W. Menzel,et al.  Discriminating clear sky from clouds with MODIS , 1998 .

[4]  T. Eck,et al.  Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols , 1999 .

[5]  A. Ansmann,et al.  European pollution outbreaks during ACE 2: Lofted aerosol plumes observed with Raman lidar at the Portuguese coast , 2001 .

[6]  James R. Johnson,et al.  Lidar measurements during Aerosols99 , 2001 .

[7]  Zhaoyan Liu,et al.  Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar. , 2002, Applied optics.

[8]  Teruyuki Nakajima,et al.  Observation of dust and anthropogenic aerosol plumes in the Northwest Pacific with a two‐wavelength polarization lidar on board the research vessel Mirai , 2002 .

[9]  R. Martin,et al.  Interannual and seasonal variability of biomass burning emissions constrained by satellite observations , 2003 .

[10]  Hiroaki Kuze,et al.  An intercomparison of lidar‐derived aerosol optical properties with airborne measurements near Tokyo during ACE‐Asia , 2003 .

[11]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[12]  O. Dubovik,et al.  Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations , 2005 .

[13]  Yoram J. Kaufman,et al.  Evaluation of the MODIS Aerosol Retrievals over Ocean and Land during CLAMS , 2005 .

[14]  Oleg Dubovik,et al.  Angstrom exponent and bimodal aerosol size distributions , 2006 .

[15]  Validation of aerosol and cloud layer structures from the space-borne lidar CALIOP using Seoul National University ground-based lidar , 2007 .

[16]  A. Ansmann,et al.  Aerosol-type-dependent lidar ratios observed with Raman lidar , 2007 .

[17]  D. Winker,et al.  Initial performance assessment of CALIOP , 2007 .

[18]  Toshiyuki Murayama,et al.  Aerosol lidar ratio characteristics measured by a multi-wavelength Raman lidar system at Anmyeon Island, Korea , 2007 .

[19]  Soon-Chang Yoon,et al.  Validation of aerosol and cloud layer structures from the space-borne lidar CALIOP using a ground-based lidar in Seoul, Korea , 2008 .

[20]  Yuichi Nagata,et al.  The Structure of the Dust Layer over the Taklimakan Deser during the Dust Storm in April 2002 as Observed Using a Depolarization Lidar , 2008 .

[21]  David J. Diner,et al.  Wildfire smoke injection heights: Two perspectives from space , 2008 .

[22]  Mark A. Vaughan,et al.  The Retrieval of Profiles of Particulate Extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) Data: Algorithm Description , 2009 .

[23]  David M. Winker,et al.  The CALIPSO Lidar Cloud and Aerosol Discrimination: Version 2 Algorithm and Initial Assessment of Performance , 2009 .

[24]  V. Freudenthaler,et al.  Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006 , 2009 .

[25]  David M. Winker,et al.  Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO Lidar Measurements , 2009 .

[26]  D. Winker,et al.  The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm , 2009 .

[27]  Jaakko Kukkonen,et al.  Comparison of CALIOP level 2 aerosol subtypes to aerosol types derived from AERONET inversion data , 2009 .

[28]  D. Winker,et al.  Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms , 2009 .

[29]  T. Eck,et al.  Global evaluation of the Collection 5 MODIS dark-target aerosol products over land , 2010 .

[30]  S. Loaëc,et al.  Simultaneous observations of lower tropospheric continental aerosols with a ground‐based, an airborne, and the spaceborne CALIOP lidar system , 2010 .

[31]  Jonathan H. Jiang,et al.  Touring the atmosphere aboard the A-Train , 2010 .

[32]  C. Scannell,et al.  Wind Speed Influences on Marine Aerosol Optical Depth , 2010 .

[33]  B. Holben,et al.  An accuracy assessment of the CALIOP/CALIPSO version 2 aerosol extinction product based on a detailed multi-sensor, multi-platform case study , 2010 .

[34]  F. Bréon,et al.  An evaluation of satellite aerosol products against sunphotometer measurements , 2011 .

[35]  B. Holben,et al.  An Accuracy Assessment of the CALIOP/CALIPSO Version 2/Version 3 Daytime Aerosol Extinction Product Based on a Detailed Multi-Sensor, Multi-Platform Case Study , 2011 .

[36]  Alexander Smirnov,et al.  Effect of Wind Speed on Aerosol Optical Depth over Remote Oceans, Based on Data from the Maritime Aerosol Network , 2011 .

[37]  Robert E. Holz,et al.  Improving the CALIOP aerosol optical depth using combined MODIS‐CALIOP observations and CALIOP integrated attenuated total color ratio , 2011 .

[38]  Soon-Chang Yoon,et al.  Intercomparisons of cloud-top and cloud-base heights from ground-based Lidar, CloudSat and CALIPSO measurements , 2011 .

[39]  David M. Winker,et al.  Intercomparison of column aerosol optical depths from CALIPSO and MODIS-Aqua , 2011 .

[40]  Jens Redemann,et al.  The comparison of MODIS-Aqua (C5) and CALIOP (V2 & V3) aerosol optical depth , 2011 .

[41]  Charles A. Trepte,et al.  Comparison of CALIPSO aerosol optical depth retrievals to AERONET measurements, and a climatology for the lidar ratio of dust , 2012 .

[42]  A. Misra,et al.  Study of MPLNET-Derived Aerosol Climatology over Kanpur, India, and Validation of CALIPSO Level 2 Version 3 Backscatter and Extinction Products , 2012 .

[43]  Charles Ichoku,et al.  Accuracy assessment of Aqua-MODIS aerosol optical depth over coastal regions: importance of quality flag and sea surface wind speed , 2012 .

[44]  Ellsworth J. Welton,et al.  Evaluating nighttime CALIOP 0.532 μm aerosol optical depth and extinction coefficient retrievals , 2012 .

[45]  Boon N. Chew,et al.  Characterizing the vertical profile of aerosol particle extinction and linear depolarization over Southeast Asia and the Maritime Continent: The 2007–2009 view from CALIOP , 2013 .

[46]  David M. Winker,et al.  The Retrieval of Profiles of Particulate Extinction from Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Data: Uncertainty and Error Sensitivity Analyses , 2013 .

[47]  Shin-Chan Han,et al.  Source parameter inversion for recent great earthquakes from a decade‐long observation of global gravity fields , 2013 .

[48]  Kathleen A. Powell,et al.  CALIOP and AERONET aerosol optical depth comparisons: One size fits none , 2013 .

[49]  M. Vaughan,et al.  Aerosol classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask , 2013 .