Counting pointlike instantons virtually without gluing

We use the first author’s idea on “constructing virtual fundamental cycles without gluing” to define the quantum correction term between the gauged linear sigma model and the nonlinear sigma model.

[1]  Jun Li Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds , 1996 .

[2]  A compactification of the moduli space of twisted holomorphic maps , 2004, math/0404407.

[3]  Dusa McDuff,et al.  J-Holomorphic Curves and Symplectic Topology , 2004 .

[4]  Guangbo Xu Gluing affine vortices , 2016, 1610.09764.

[5]  K. Roberts,et al.  Thesis , 2002 .

[6]  G. Tian,et al.  Gauged Linear Sigma Model in Geometric Phases , 2018, 1809.00424.

[7]  F. Quinn Ends of maps. III. Dimensions 4 and 5 , 1982 .

[8]  K. Ôno,et al.  Arnold conjecture and Gromov-Witten invariants for general symplectic manifolds , 1999 .

[9]  Cumrun Vafa,et al.  Mirror Symmetry , 2000, hep-th/0002222.

[10]  F. Ziltener The Invariant Symplectic Action and Decay for Vortices , 2006, math/0611768.

[11]  D. Salamon,et al.  J-holomorphic curves, moment maps, and invariants of Hamiltonian group actions , 1999, math/9909122.

[12]  D. Salamon,et al.  The symplectic vortex equations and invariants of Hamiltonian group actions , 2001, math/0111176.

[13]  Nicholas P. Warner,et al.  Catastrophes and the classification of conformal theories , 1989 .

[14]  David Favero,et al.  Fundamental Factorization of a GLSM, Part I: Construction , 2018, 1802.05247.

[15]  G. Tian,et al.  Correlation functions of gauged linear σ-model , 2016 .

[16]  N. Tjøtta QUANTUM COHOMOLOGY OF A , 1999 .

[17]  G. Tian,et al.  Analysis of gauged Witten equation , 2014, Journal für die reine und angewandte Mathematik (Crelles Journal).

[18]  Michael H. Freedman,et al.  Topology of 4-manifolds , 1990 .

[19]  D. Mcduff,et al.  The topology of Kuranishi atlases , 2015, 1508.01844.

[20]  C. Woodward,et al.  Geometric realizations of the multiplihedra , 2010, Compositio Mathematica.

[21]  C. Woodward QUANTUM KIRWAN MORPHISM AND GROMOV-WITTEN INVARIANTS OF QUOTIENTS I , 2012, 1408.5869.

[22]  Guangbo Xu,et al.  Local model for the moduli space of affine vortices , 2015, 1512.06713.

[23]  Edward Witten,et al.  Phases of N = 2 theories in two dimensions , 1993, hep-th/9301042.

[24]  Gromov--Witten invariants of symplectic quotients and adiabatic limits , 2001, math/0106157.

[25]  John Reich Part I: Construction , 2017 .

[26]  E. W. Morris No , 1923, The Hospital and health review.

[27]  F. Ziltener Symplectic vortices on the complex plane and quantum cohomology , 2006 .

[28]  J. Preskill VORTICES AND MONOPOLES , 1986 .