Metric and Layered Temporal Logic for Time Granularity

Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

[1]  Angelo Montanari,et al.  Decidability Results for Metric and Layered Temporal Logics , 1996, Notre Dame J. Formal Log..

[2]  M. de Rijke,et al.  Completeness Results for Two-sorted Metric Temporal Logics , 1995, AMAST.

[3]  Alberto Policriti,et al.  T-Theorem Proving I , 1995, J. Symb. Comput..

[4]  Thomas A. Henzinger,et al.  Real-Time Logics: Complexity and Expressiveness , 1993, Inf. Comput..

[5]  Dov M. Gabbay,et al.  Adding a temporal dimension to a logic system , 1992, J. Log. Lang. Inf..

[6]  Hans Jürgen Ohlbach,et al.  Semantics-Based Translation Methods for Modal Logics , 1991, J. Log. Comput..

[7]  Sushil Jajodia,et al.  Testing complex temporal relationships involving multiple granularities and its application to data mining (extended abstract) , 1996, PODS.

[8]  Heinrich Wansing,et al.  Sequent Calculi for Normal Modal Proposisional Logics , 1994, J. Log. Comput..

[9]  Dov M. Gabbay,et al.  Combining Temporal Logic Systems , 1996, Notre Dame J. Formal Log..

[10]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[11]  Sushil Jajodia,et al.  Dealing with Granularity of Time in Temporal Databases , 1991, CAiSE.

[12]  Johan van Benthem,et al.  Modal Deduction in Second-Order Logic and Set Theory - I , 1997, J. Log. Comput..

[13]  Nicholas Rescher,et al.  Topological Logic , 1969, Journal of Symbolic Logic.

[14]  M. de Rijke,et al.  Two-sorted Metric Temporal Logics , 1997, Theor. Comput. Sci..

[15]  Angelo Montanari A decidable theory of nitely-layered metric temporal structures , 1996 .

[16]  A. Montanari,et al.  Translating modal formulae as set-theoretic terms , 1995 .

[17]  Dov M. Gabbay,et al.  Quantifier Elimination in Second-Order Predicate Logic , 1992, KR.

[18]  A. Ferro,et al.  Decision Procedures for Elementary Sublanguages of Set Theory II , 1981 .

[19]  Peter B. Ladkin,et al.  The Completeness of a Natural System for Reasoning with Time Intervals , 1987, IJCAI.

[20]  C. V. Ramamoorthy,et al.  Performance Evaluation of Asynchronous Concurrent Systems Using Petri Nets , 1980, IEEE Transactions on Software Engineering.

[21]  Larry Joseph Stockmeyer,et al.  The complexity of decision problems in automata theory and logic , 1974 .

[22]  Cliff B. Jones,et al.  Systematic software development using VDM , 1986, Prentice Hall International Series in Computer Science.

[23]  Max J. Cresswell,et al.  A companion to modal logic , 1984 .

[24]  Peter Øhrstrøm,et al.  Temporal Logic , 1994, Lecture Notes in Computer Science.

[25]  Saharon Shelah,et al.  On the temporal analysis of fairness , 1980, POPL '80.

[26]  Jon Barwise,et al.  Admissible sets and structures , 1975 .

[27]  David Harel,et al.  Statecharts: A Visual Formalism for Complex Systems , 1987, Sci. Comput. Program..

[28]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[29]  J. Euzenat An algebraic approach to granularity in time representation , 1995 .

[30]  Angelo Montanari,et al.  Embedding Time Granularity in a Logical Specification Language for Synchronous Real-Time Systems , 1993, Sci. Comput. Program..

[31]  Domenico Cantone,et al.  What Is Computable Set Theory , 1990 .

[32]  M. de Rijke,et al.  Sahlqvist's theorem for boolean algebras with operators with an application to cylindric algebras , 1995, Stud Logica.

[33]  Sushil Jajodia,et al.  A general framework and reasoning models for time granularity , 1996, Proceedings Third International Workshop on Temporal Representation and Reasoning (TIME '96).

[34]  Antony Galton,et al.  The logic of occurrence , 1987 .

[35]  R. Thomason Some Completeness Results for Modal Predicate Calculi , 1970 .

[36]  Curtis E. Dyreson,et al.  Temporal Granularity , 1995, The TSQL2 Temporal Query Language.

[37]  Gordon I. McCalla,et al.  A Computational Framework for Granularity and its Application to Educational Diagnosis , 1989, IJCAI.

[38]  Angelo Montanari,et al.  Embedding time granularity in logical specifications of real-time systems , 1991, Proceedings. EUROMICRO `91 Workshop on Real-Time Systems.

[39]  R. McNaughton Review: J. Richard Buchi, Weak Second-Order Arithmetic and Finite Automata; J. Richard Buchi, On a Decision Method in Restricted second Order Arithmetic , 1963, Journal of Symbolic Logic.

[40]  Andreas Nonnengart,et al.  First-Order Modal Logic Theorem Proving and Functional Simulation , 1993, IJCAI.

[41]  Sushil Jajodia,et al.  Integrating Temporal Data in a Heterogeneous Environment , 1993, Temporal Databases.

[42]  Ron Koymans,et al.  Specifying Message Passing and Time-Critical Systems with Temporal Logic , 1992, Lecture Notes in Computer Science.

[43]  David Forster,et al.  A Representation for Collections of Temporal Intervals , 1986, AAAI.

[44]  Francesco Pinciroli,et al.  Managing time granularity of narrative clinical information: the temporal data model TIME-NESIS , 1996, Proceedings Third International Workshop on Temporal Representation and Reasoning (TIME '96).

[45]  D. Gabbay An Irreflexivity Lemma with Applications to Axiomatizations of Conditions on Tense Frames , 1981 .

[46]  Amir Pnueli The Temporal Semantics of Concurrent Programs , 1981, Theor. Comput. Sci..

[47]  Hans Läuchli,et al.  Monadic second order definable relations on the binary tree , 1987, The Journal of Symbolic Logic.

[48]  M. de Rijke,et al.  The Modal Logic of Inequality , 1992, J. Symb. Log..

[49]  J.F.A.K. van Benthem,et al.  Modal logic and classical logic , 1983 .

[50]  Angelo Montanari,et al.  Set-theoretic decidability result for modal logic , 1995 .

[51]  M. de Rijke,et al.  Zooming In, Zooming Out , 1997, J. Log. Lang. Inf..

[52]  Carlo Ghezzi,et al.  TRIO: A logic language for executable specifications of real-time systems , 1990, J. Syst. Softw..

[53]  Hans Jürgen Ohlbach,et al.  Translation Methods for Non-Classical Logics: An Overview , 1993, Log. J. IGPL.

[54]  Carlo Ghezzi,et al.  A Unified High-level Petri Net Model for Time Critical Systems , 1991 .

[55]  Angelo Montanari,et al.  Dealing with Time Granularity in the Event Calculus , 1992, FGCS.

[56]  Elliott Mendelson,et al.  Introduction to Mathematical Logic , 1979 .

[57]  Ian A. Mason,et al.  Propositional Logic of Context , 1993, AAAI.

[58]  R. Goldblatt Logics of Time and Computation , 1987 .

[59]  D. Cantone A decision procedure for a class of unquantified formulae of set theory involving the powerset and Singleton operators , 1987 .

[60]  J. Krivine,et al.  Introduction to Axiomatic Set Theory , 1971 .

[61]  David Stuart Robertson,et al.  Representing interaction of agents at different time granularities , 1996, Proceedings Third International Workshop on Temporal Representation and Reasoning (TIME '96).

[62]  Marcus Kracht,et al.  Highway to the Danger Zone , 1995, J. Log. Comput..

[63]  Thomas A. Henzinger,et al.  Temporal Proof Methodologies for Timed Transition Systems , 1994, Inf. Comput..

[64]  José Meseguer,et al.  Principles of OBJ2 , 1985, POPL.

[65]  Barbara Pernici,et al.  temporal Reasoning , 1993, Temporal Databases.

[66]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[67]  Chris Evans The macro-event calculus: representing temporal granularity , 1990 .

[68]  James Clifford,et al.  A Simple, General Structure for Temporal Domains , 1986, Temporal Aspects in Information Systems.

[69]  Johan van Benthem,et al.  Modal Deduction in Second-Order Logic and Set Theory - II , 1998, Stud Logica.

[70]  José Luiz Fiadeiro,et al.  Sometimes "Tomorrow" is "Sometime" - Action Refinement in a Temporal Logic of Objects , 1994, ICTL.

[71]  Peter Aczel,et al.  Non-well-founded sets , 1988, CSLI lecture notes series.

[72]  Zohar Manna,et al.  The Temporal Logic of Reactive and Concurrent Systems , 1991, Springer New York.

[73]  Thomas Dean,et al.  Using temporal hierarchies to efficiently maintain large temporal databases , 1989, JACM.

[74]  Tommaso Bolognesi,et al.  Tableau methods to describe strong bisimilarity on LOTOS processes involving pure interleaving and enabling , 1994, FORTE.

[75]  P. Merlin,et al.  A Methodology for the Design and Implementation of Communication Protocols , 1976, IEEE Trans. Commun..

[76]  Lawrence S. Moss,et al.  Modal Correspondence for Models , 1998, J. Philos. Log..

[77]  K. Gödel The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis. , 1938, Proceedings of the National Academy of Sciences of the United States of America.

[78]  James P. Delgrande,et al.  Characterizing temporal repetition , 1996, Proceedings Third International Workshop on Temporal Representation and Reasoning (TIME '96).

[79]  Gruia-Catalin Roman Formal Specification of Geographic Data Processing Requirements , 1986, ICDE.

[80]  Michael Stonebraker,et al.  Implementing calendars and temporal rules in next generation databases , 1994, Proceedings of 1994 IEEE 10th International Conference on Data Engineering.

[81]  Steven K. Thomason Reduction of Tense Logic to Modal Logic. I , 1974, J. Symb. Log..