Integrality Gaps of Integer Knapsack Problems

We obtain optimal lower and upper bounds for the (additive) integrality gaps of integer knapsack problems. In a randomised setting, we show that the integrality gap of a “typical” knapsack problem is drastically smaller than the integrality gap that occurs in a worst case scenario.

[1]  Ravi Kannan,et al.  Lattice translates of a polytope and the Frobenius problem , 1992, Comb..

[2]  Friedrich Eisenbrand,et al.  Testing Additive Integrality Gaps , 2010, SODA.

[3]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[4]  Iskander Aliev,et al.  On the lattice programming gap of the group problems , 2014, Oper. Res. Lett..

[5]  Seth Sullivant Small Contingency Tables with Large Gaps , 2005, SIAM J. Discret. Math..

[6]  Ramírez Alfonsin,et al.  The diophantine frobenius problem , 2005 .

[7]  Wolfgang M. Schmidt,et al.  Asymptotic formulae for point lattices of bounded determinant and subspaces of bounded height , 1968 .

[8]  Istvan Fary,et al.  Sur la densité des réseaux de domaines convexes , 1950 .

[9]  Marshall Hall,et al.  A problem in partitions , 1941 .

[10]  Ralph E. Gomory,et al.  Outline of an Algorithm for Integer Solutions to Linear Programs and An Algorithm for the Mixed Integer Problem , 2010, 50 Years of Integer Programming.

[11]  J. Alonso,et al.  Convex and Discrete Geometry , 2009 .

[12]  Charles E. Blair,et al.  The value function of a mixed integer program: I , 1977, Discret. Math..

[13]  Iskander Aliev,et al.  An optimal lower bound for the Frobenius problem , 2005 .

[14]  R. Chandrasekaran Polynomial Algorithms for Totally Dual Integral Systems and Extensions , 1981 .

[15]  Bernd Sturmfels,et al.  Computing the integer programming gap , 2007, Comb..

[16]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[17]  Wolfgang M. Schmidt,et al.  Integer matrices, sublattices of $$\mathbb {Z}^{m}$$Zm, and Frobenius numbers , 2015 .

[18]  Friedrich Eisenbrand,et al.  Parametric Integer Programming in Fixed Dimension , 2008, Math. Oper. Res..

[19]  H. P. Williams THEORY OF LINEAR AND INTEGER PROGRAMMING (Wiley-Interscience Series in Discrete Mathematics and Optimization) , 1989 .

[20]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[21]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[22]  Gérard Cornuéjols,et al.  Integer Programming Models , 2021, Linear and Convex Optimization.

[23]  Dimitris Bertsimas,et al.  Optimization over integers , 2005 .

[24]  Randall Dougherty,et al.  The Degree-Diameter Problem for Several Varieties of Cayley Graphs I: The Abelian Case , 2004, SIAM J. Discret. Math..

[25]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[26]  Jens Marklof,et al.  Diameters of random circulant graphs , 2013, Comb..

[27]  Andreas Strömbergsson On the limit distribution of Frobenius numbers , 2011 .

[28]  William J. Cook,et al.  Sensitivity theorems in integer linear programming , 1986, Math. Program..

[29]  Charles E. Blair,et al.  The value function of an integer program , 1982, Math. Program..

[30]  Andreas Strombergsson,et al.  On the limit distribution of Frobenius numbers , 2011, 1104.0108.