NPASA: An algorithm for nonlinear programming -- Motivation and Global Convergence

In this paper, we present a two phase method for solving nonlinear programming problems called Nonlinear Polyhedral Active Set Algorithm (NPASA) that has global and local convergence guarantees under reasonable assumptions. The first phase consists of an augmented Lagrangian method to ensure global convergence while the second phase is designed to promote fast local convergence by performing a balanced reduction of two error estimators for nonlinear programs. After presenting error estimators for nonlinear programs and our algorithm NPASA, we establish global convergence properties for NPASA. Local quadratic convergence of NPASA is established in a companion paper [11].

[1]  M. Hestenes Multiplier and gradient methods , 1969 .

[2]  William W. Hager,et al.  Projection onto a Polyhedron that Exploits Sparsity , 2016, SIAM J. Optim..

[3]  Jorge Nocedal,et al.  Knitro: An Integrated Package for Nonlinear Optimization , 2006 .

[4]  S. M. Robinson Extension of Newton's method to nonlinear functions with values in a cone , 1972 .

[5]  W. Hager Analysis and implementation of a dual algorithm for constrained optimization , 1993 .

[6]  Duan Li,et al.  On the Convergence of Augmented Lagrangian Methods for Constrained Global Optimization , 2007, SIAM J. Optim..

[7]  H. X. Wu,et al.  The global convergence of augmented Lagrangian methods based on NCP function in constrained nonconvex optimization , 2009, Appl. Math. Comput..

[8]  Michael A. Saunders,et al.  Large-scale linearly constrained optimization , 1978, Math. Program..

[9]  Nicholas I. M. Gould,et al.  Numerical experiments with the LANCELOT package (release A) for large-scale nonlinear optimization , 1996, Math. Program..

[10]  Alexey F. Izmailov,et al.  Global Convergence of Augmented Lagrangian Methods Applied to Optimization Problems with Degenerate Constraints, Including Problems with Complementarity Constraints , 2012, SIAM J. Optim..

[11]  William W. Hager,et al.  NPASA: An algorithm for nonlinear programming -- Local Convergence , 2021 .

[12]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[13]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[14]  Robert Michael Lewis,et al.  A Globally Convergent Augmented Lagrangian Pattern Search Algorithm for Optimization with General Constraints and Simple Bounds , 2002, SIAM J. Optim..

[15]  Olvi L. Mangasarian,et al.  Superlinearly convergent quasi-newton algorithms for nonlinearly constrained optimization problems , 1976, Math. Program..

[16]  M. Powell A method for nonlinear constraints in minimization problems , 1969 .

[17]  W. Hager,et al.  An active set algorithm for nonlinear optimization with polyhedral constraints , 2016, 1606.01992.

[18]  William W. Hager,et al.  A New Active Set Algorithm for Box Constrained Optimization , 2006, SIAM J. Optim..

[19]  M. J. D. Powell,et al.  A fast algorithm for nonlinearly constrained optimization calculations , 1978 .

[20]  P. Toint,et al.  Lancelot: A FORTRAN Package for Large-Scale Nonlinear Optimization (Release A) , 1992 .

[21]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[22]  E. Polak,et al.  A globally convergent, implementable multiplier method with automatic penalty limitation , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[23]  Sven Leyffer,et al.  User manual for filterSQP , 1998 .

[24]  Shih-Ping Han,et al.  Superlinearly convergent variable metric algorithms for general nonlinear programming problems , 1976, Math. Program..

[25]  Lorenz T. Biegler,et al.  Line Search Filter Methods for Nonlinear Programming: Motivation and Global Convergence , 2005, SIAM J. Optim..

[26]  José Mario Martínez,et al.  On Augmented Lagrangian Methods with General Lower-Level Constraints , 2007, SIAM J. Optim..

[27]  José Mario Martínez,et al.  Numerical Comparison of Augmented Lagrangian Algorithms for Nonconvex Problems , 2005, Comput. Optim. Appl..

[28]  Lorenz T. Biegler,et al.  Line Search Filter Methods for Nonlinear Programming: Local Convergence , 2005, SIAM J. Optim..

[29]  J. Daniel Newton's method for nonlinear inequalities , 1973 .

[30]  P. Toint,et al.  A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds , 1991 .

[31]  William W. Hager,et al.  Error estimation in nonlinear optimization , 2014, J. Glob. Optim..