A Fuzzy Ontology for Database Querying with Bipolar Preferences

The expression and the evaluation of complex user preferences in the context of distributed and heterogeneous information systems are tackled in this paper. Complex preferences are modeled by fuzzy bipolar conditions, which associate negative and positive conditions. Queries involving such conditions are called bipolar queries. In our case, such queries are addressed to information systems such as Web applications, built on several distributed and heterogeneous databases. This querying can lead to process huge volumes of data and can deliver massive responses, in which it is difficult to the user to distinguish the relevant answers from irrelevant ones. Semantic aspects make it possible to address this problem by providing a personalized data access method, so that only the most relevant data are targeted to evaluate queries. We introduce then in this paper a new approach for flexible querying of complex information systems that combines a reasoning mechanism (an ontology‐based on the fuzzy bipolar DLR‐Lite) with a bipolar relational language of a high expressivity (Bipolar SQLf language). The reasoning mechanism can also answer queries in approximative way, based on degrees expressing at which extent it is possible to substitute a concept in the query with other concepts, while still meaningful to the user.

[1]  Didier Dubois,et al.  Bipolarity in Flexible Querying , 2002, FQAS.

[2]  Patrick Bosc,et al.  SQLf: a relational database language for fuzzy querying , 1995, IEEE Trans. Fuzzy Syst..

[3]  Werner Kießling,et al.  Foundations of Preferences in Database Systems , 2002, VLDB.

[4]  Slawomir Zadrozny,et al.  Bipolar Queries: An Approach and its Various Interpretations , 2009, IFSA/EUSFLAT Conf..

[5]  Fernando Bobillo,et al.  DeLorean: A reasoner for fuzzy OWL 2 , 2012, Expert Syst. Appl..

[6]  Ludovic Lietard,et al.  An extension of a fuzzy ontology for flexible querying , 2011, 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011).

[7]  Ludovic Liétard,et al.  Contribution a l'interrogation flexible de bases de donnees : etude des propositions quantifiees floues , 1995 .

[8]  Umberto Straccia,et al.  SoftFacts: A Top-k Retrieval Engine for a Tractable Description Logic Accessing Relational Databases , 2009 .

[9]  Didier Dubois,et al.  Handling Bipolar Queries in Fuzzy Information Processing , 2008, Handbook of Research on Fuzzy Information Processing in Databases.

[10]  Antoon Bronselaer,et al.  Dealing with Positive and Negative Query Criteria in Fuzzy Database Querying , 2009, FQAS.

[11]  Diego Calvanese,et al.  Data Complexity of Query Answering in Description Logics , 2006, Description Logics.

[12]  Umberto Straccia,et al.  fuzzyDL: An expressive fuzzy description logic reasoner , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[13]  R. Yager Families of OWA operators , 1993 .

[14]  Umberto Straccia,et al.  Description Logics with Fuzzy Concrete Domains , 2005, UAI.

[15]  Patrick Bosc,et al.  Extending relational algebra to handle bipolarity , 2010, SAC '10.

[16]  Gloria Bordogna,et al.  A fuzzy query language with a linguistic hierarchical aggregator , 1994, SAC '94.

[17]  Ludovic Lietard,et al.  Bipolarity and the relational division , 2011, EUSFLAT Conf..

[18]  Ronald R. Yager,et al.  General Multiple-Objective Decision Functions and Linguistically Quantified Statements , 1984, Int. J. Man Mach. Stud..

[19]  Ian Horrocks,et al.  Fuzzy OWL: Uncertainty and the Semantic Web , 2005, OWLED.

[20]  Kevin Chen-Chuan Chang,et al.  RankSQL: query algebra and optimization for relational top-k queries , 2005, SIGMOD '05.

[21]  Umberto Straccia Answering Vague Queries in Fuzzy DL-Lite , 2006 .

[22]  Umberto Straccia,et al.  Towards a Fuzzy Description Logic for the Semantic Web (Preliminary Report) , 2005, ESWC.

[23]  Umberto Straccia,et al.  Informative Top-k Retrieval for Advanced Skill Management , 2009, Semantic Web Information Management.

[24]  E. Trillas Fuzzy Sets in Approximate Reasoning and Information Systems , 2001 .

[25]  Baowen Xu,et al.  Extended Fuzzy ALCN and Its Tableau Algorithm , 2005, FSKD.

[26]  Jan Chomicki,et al.  Querying with Intrinsic Preferences , 2002, EDBT.

[27]  Umberto Straccia,et al.  Managing uncertainty and vagueness in description logics for the Semantic Web , 2008, J. Web Semant..

[28]  Jeff Z. Pan,et al.  Expressive Querying over Fuzzy DL-Lite Ontologies , 2007, Description Logics.

[29]  Ludovic Lietard,et al.  On the Definition of Extended Norms and Co-norms to Aggregate Fuzzy Bipolar Conditions , 2009, IFSA/EUSFLAT Conf..

[30]  Hailong Wang,et al.  FRESG: A Kind of Fuzzy Description Logic Reasoner , 2009, DEXA.

[31]  L. Tanca,et al.  Semantic Web Information Management , 2010 .

[32]  Slawomir Zadrozny,et al.  Bipolar Queries Using Various Interpretations of Logical Connectives , 2007, IFSA.

[33]  Ludovic Lietard,et al.  Bipolar SQLf: A Flexible Querying Language for Relational Databases , 2011, FQAS.

[34]  Daniel Sánchez,et al.  Generalizing Quantification in Fuzzy Description Logics , 2004, Fuzzy Days.

[35]  Diego Calvanese,et al.  DL-Lite: Tractable Description Logics for Ontologies , 2005, AAAI.

[36]  José Galindo,et al.  Handbook of Research on Fuzzy Information Processing in Databases , 2008, Handbook of Research on Fuzzy Information Processing in Databases.

[37]  D. Dubois,et al.  Fuzzy Sets in Approximate Reasoning and Information Systems , 2012 .

[38]  Ian Horrocks,et al.  The Fuzzy Description Logic f-SHIN , 2005, ISWC-URSW.

[39]  Umberto Straccia,et al.  DLMedia: an Ontology Mediated Multimedia Information Retrieval System , 2007, Description Logics.

[40]  Patrick Bosc,et al.  On the extension of SQL to fuzzy bipolar conditions , 2009, NAFIPS 2009 - 2009 Annual Meeting of the North American Fuzzy Information Processing Society.

[41]  Piero A. Bonatti,et al.  Some Complexity Results on Fuzzy Description Logics , 2003, WILF.