Submilliarcsecond Optical Interferometry of the High-mass X-Ray Binary BP Cru with VLTI/GRAVITY

We observe the high-mass X-ray binary (HMXB) BP Cru using interferometry in the near-infrared K band with VLTI/GRAVITY. Continuum visibilities are at most partially resolved, consistent with the predicted size of the hypergiant. Differential visibility amplitude ( ) and phase ( ) signatures are observed across the He i and Brγ lines, the latter seen strongly in emission, unusual for the donor star’s spectral type. For a baseline m, the differential phase rms corresponds to an astrometric precision of . We generalize expressions for image centroid displacements and variances in the marginally resolved limit of interferometry to spectrally resolved data, and use them to derive model-independent properties of the emission such as its asymmetry, extension, and strong wavelength dependence. We propose geometric models based on an extended and distorted wind and/or a high-density gas stream, which has long been predicted to be present in this system. The observations show that optical interferometry is now able to resolve HMXBs at the spatial scale where accretion takes place, and therefore to probe the effects of the gravitational and radiation fields of the compact object on its environment.

[1]  S. Rabien,et al.  First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer , 2017, 1705.02345.

[2]  F. Fuerst,et al.  Detection of highly ionized iron during a giant flare of GX 301-2 , 2016 .

[3]  P. Hadrava,et al.  Stellar wind in state transitions of high-mass X-ray binaries , 2014, 1412.3924.

[4]  Mathieu Servillat,et al.  Herschel OBSERVATIONS OF DUST AROUND THE HIGH-MASS X-RAY BINARY GX 301–2 , 2014, 1410.6490.

[5]  A. Amorim,et al.  GRAVITY data reduction software , 2014, Astronomical Telescopes and Instrumentation.

[6]  O. Chesneau,et al.  The variable stellar wind of Rigel probed at high spatial and spectral resolution , 2014, 1405.0907.

[7]  B. Paul,et al.  Orbital phase resolved spectroscopy of GX 301-2 with MAXI , 2014, 1404.3902.

[8]  B. Lazareff,et al.  The close environment of high-mass X-ray binaries at high angular resolution I. VLTI/AMBER and VLTI/PIONIER near-infrared interferometric observations of Vela X-1 , 2013, 1311.4102.

[9]  S. Tsygankov,et al.  High-mass X-ray binaries in the Milky Way , 2013, 1505.03651.

[10]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[11]  J. Monnier,et al.  Radio and optical interferometry: Basic observing techniques and data analysis , 2012, 1201.2963.

[12]  I. Howarth,et al.  On the nature of the galactic early-B hypergiants , 2012, 1202.3991.

[13]  K. Hofmann,et al.  First spectro-interferometric survey of Be stars I. Observations and constraints on the disk geometry and kinematics , 2011, 1111.2487.

[14]  O. Chesneau,et al.  Time, spatial, and spectral resolution of the Hα line-formation region of Deneb and Rigel with the VEGA/CHARA interferometer , 2010, 1007.2095.

[15]  L. A. Antonelli,et al.  TEMPORAL PROPERTIES OF GX 301−2 OVER A YEAR-LONG OBSERVATION WITH SuperAGILE , 2009, 0911.3743.

[16]  Á. López-Sánchez,et al.  Radio emission from the high-mass X-ray binary BP Cru: first detection , 2009, 0909.2511.

[17]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[18]  F. P. Schloerb,et al.  Imaging the asymmetric dust shell around CI Cam with long baseline optical interferometry , 2009, 0905.0154.

[19]  K. Blundell,et al.  Inflow and outflow from the accretion disc of the microquasar SS 433: UKIRT spectroscopy , 2009, 0904.4228.

[20]  Elisabeth Hoppe,et al.  EUROPEAN ORGANISATION FOR ASTRONOMICAL RESEARCH IN THE SOUTHERN HEMISPHERE , 2009 .

[21]  D. Leahy,et al.  Stellar wind accretion in GX 301−2: evidence for a high-density stream , 2007, 0709.0543.

[22]  E. Tatulli,et al.  Interferometric data reduction with AMBER/VLTI. Principle, estimators, and illustration. , 2006, astro-ph/0603046.

[23]  E.P.J. van den Heuvel,et al.  Catalogue of high-mass X-ray binaries in the Galaxy (4th edition) , 2006 .

[24]  Madrid,et al.  VLT/UVES spectroscopy of Wray 977, the hypergiant companion to the X-ray pulsar GX301-2 , 2006, astro-ph/0607613.

[25]  W. Lewin,et al.  Compact stellar X-ray sources , 2006 .

[26]  P. A. Charles,et al.  Compact Stellar X-Ray Sources: Optical, ultraviolet and infrared observations of X-ray binaries , 2006 .

[27]  R. Kudritzki,et al.  A Medium Resolution Near-Infrared Spectral Atlas of O and Early-B Stars , 2005, astro-ph/0506705.

[28]  Pascal Bordé,et al.  A catalog of bright calibrator stars for 200-m baseline near-infrared stellar interferometry , 2004, astro-ph/0412251.

[29]  M. Kuster,et al.  The variable cyclotron line in GX 301-2 , 2004, astro-ph/0409015.

[30]  R. Lachaume,et al.  On marginally resolved objects in optical interferometry , 2003, astro-ph/0304259.

[31]  J. Clark,et al.  Near IR spectroscopy of the X-ray binary Circinus X-1 , 2003 .

[32]  D. Leahy Modeling the RXTE/ASM X-ray Light Curve of GX301-2 , 2002 .

[33]  R. Kudritzki,et al.  WINDS FROM HOT STARS , 2000 .

[34]  R. W. Nelson,et al.  Rapid Spin-Up Episodes in the Wind-fed Accreting Pulsar GX 301–2 , 1997 .

[35]  Infrared spectroscopy of low-mass X-ray binaries — II , 1999, astro-ph/9901327.

[36]  M. Rieke,et al.  A spectral atlas of hot, luminous stars at 2 microns , 1996 .

[37]  C. Day,et al.  ASCA and GRO Observations of GX 301-2 , 1995 .

[38]  J. Blondin The shadow wind in high-mass X-ray binaries , 1994 .

[39]  F. Haberl The X-ray properties of GX 301−2 (4U 1223-62) , 1991 .

[40]  D. Leahy Evidence for a gas stream in GX301 – 2 , 1991 .

[41]  I. Stevens An enhanced stellar wind accretion model for binary X-ray transients , 1988 .

[42]  John I. Castor,et al.  Radiation-driven winds in Of stars. , 1975 .

[43]  J. Ostriker,et al.  Neutron-star accretion in a stellar wind - Model for a pulsed X-ray source. , 1973 .

[44]  F. Hoyle,et al.  On the Mechanism of Accretion by Stars , 1944 .