Online Social Networks: Human Cognitive Constraints in Facebook and Twitter Personal Graphs

Online Social Networks: Human Cognitive Constraints in Facebook and Twitter provides new insights into the structural properties of personal online social networks and the mechanisms underpinning human online social behavior. As the availability of digital communication data generated by social media is revolutionizing the field of social networks analysis, the text discusses the use of large- scale datasets to study the structural properties of online ego networks, to compare them with the properties of general human social networks, and to highlight additional properties. Users will find the data collected and conclusions drawn useful during design or research service initiatives that involve online and mobile social network environments.Provides an analysis of the structural properties of ego networks in online social networks Presents quantitative evidence of the Dunbars number in online environmentsDiscusses original structural and dynamic properties of human social network through OSN analysis

[1]  Ben Y. Zhao,et al.  Understanding latent interactions in online social networks , 2013, TWEB.

[2]  Marco Conti,et al.  The Role of Trusted Relationships on Content Spread in Distributed Online Social Networks , 2014, Euro-Par Workshops.

[3]  R. Alexander Bentley,et al.  Network scaling reveals consistent fractal pattern in hierarchical mammalian societies , 2008, Biology Letters.

[4]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[5]  Marco Conti,et al.  A Model to Represent Human Social Relationships in Social Network Graphs , 2012, SocInfo.

[6]  Anna Wu,et al.  Detecting professional versus personal closeness using an enterprise social network site , 2010, CHI.

[7]  Cecilia Mascolo,et al.  The Length of Bridge Ties: Structural and Geographic Properties of Online Social Interactions , 2012, ICWSM.

[8]  M. Newman Coauthorship networks and patterns of scientific collaboration , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Peter Kenning,et al.  The spread of obesity in a social network. , 2007, The New England journal of medicine.

[10]  Thomas V. Pollet,et al.  Exploring variation in active network size: Constraints and ego characteristics , 2009, Soc. Networks.

[11]  Laura Ricci,et al.  Trusted Dynamic Storage for Dunbar-Based P2P Online Social Networks , 2014, OTM Conferences.

[12]  Mor Naaman,et al.  Unfolding the event landscape on twitter: classification and exploration of user categories , 2012, CSCW '12.

[13]  Ling Huang,et al.  Evolution of social-attribute networks: measurements, modeling, and implications using google+ , 2012, Internet Measurement Conference.

[14]  Аna Bilinovic,et al.  Homophily in social networks , 2016 .

[15]  Mark S. Granovetter The Strength of Weak Ties , 1973, American Journal of Sociology.

[16]  Hosung Park,et al.  What is Twitter, a social network or a news media? , 2010, WWW '10.

[17]  Didier Sornette,et al.  Discrete hierarchical organization of social group sizes , 2004, Proceedings of the Royal Society B: Biological Sciences.

[18]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[19]  M. Newman,et al.  Why social networks are different from other types of networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Lada A. Adamic,et al.  The role of social networks in information diffusion , 2012, WWW.

[21]  Robin I. M. Dunbar Constraints on the evolution of social institutions and their implications for information flow , 2010, Journal of Institutional Economics.

[22]  Víctor M. Eguíluz,et al.  Entangling Mobility and Interactions in Social Media , 2013, PloS one.

[23]  Andrew McCallum,et al.  Extracting social networks and contact information from email and the Web , 2004, CEAS.

[24]  Stefan Thurner,et al.  Triadic closure dynamics drives scaling laws in social multiplex networks , 2013, 1301.0259.

[25]  Franco Zambonelli,et al.  Looking ahead in pervasive computing: Challenges and opportunities in the era of cyber-physical convergence , 2012, Pervasive Mob. Comput..

[26]  Robin I. M. Dunbar,et al.  Encephalization is not a universal macroevolutionary phenomenon in mammals but is associated with sociality , 2010, Proceedings of the National Academy of Sciences.

[27]  David Dekker,et al.  Measures of Simmelian Tie Strength, Simmelian Brokerage, and, the Simmelianly Brokered , 2006, J. Soc. Struct..

[28]  Krishna P. Gummadi,et al.  On the evolution of user interaction in Facebook , 2009, WOSN '09.

[29]  Robin I. M. Dunbar Social Brain Hypothesis , 1998, Encyclopedia of Evolutionary Psychological Science.

[30]  A-L Barabási,et al.  Structure and tie strengths in mobile communication networks , 2006, Proceedings of the National Academy of Sciences.

[31]  Jennifer Neville,et al.  Modeling relationship strength in online social networks , 2010, WWW '10.

[32]  Robin I. M. Dunbar Neocortex size and group size in primates: a test of the hypothesis , 1995 .

[33]  Marco Conti,et al.  Analysis of Ego Network Structure in Online Social Networks , 2012, 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing.

[34]  Jure Leskovec,et al.  Information diffusion and external influence in networks , 2012, KDD.

[35]  Ben Y. Zhao,et al.  Multi-scale dynamics in a massive online social network , 2012, Internet Measurement Conference.

[36]  Seungyeop Han,et al.  Analysis of topological characteristics of huge online social networking services , 2007, WWW '07.

[37]  B. Bahrami,et al.  Online social network size is reflected in human brain structure , 2011, Proceedings of the Royal Society B: Biological Sciences.

[38]  Liviu Iftode,et al.  Social Butterfly: Social Caches for Distributed Social Networks , 2011, 2011 IEEE Third Int'l Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Int'l Conference on Social Computing.

[39]  Robin I. M. Dunbar,et al.  The social brain hypothesis and its implications for social evolution , 2009, Annals of human biology.

[40]  Refik Molva,et al.  Safebook: A privacy-preserving online social network leveraging on real-life trust , 2009, IEEE Communications Magazine.

[41]  Robin I. M. Dunbar,et al.  Bondedness and sociality , 2010 .

[42]  Robin I. M. Dunbar,et al.  Social network size in humans , 2003, Human nature.

[43]  Andrea Lancichinetti,et al.  Community detection algorithms: a comparative analysis: invited presentation, extended abstract , 2009, VALUETOOLS.

[44]  Marco Conti,et al.  The structure of online social networks mirrors those in the offline world , 2015, Soc. Networks.

[45]  D S Callaway,et al.  Network robustness and fragility: percolation on random graphs. , 2000, Physical review letters.

[46]  Lars Backstrom,et al.  The Anatomy of the Facebook Social Graph , 2011, ArXiv.

[47]  Robin I. M. Dunbar,et al.  Social networks, support cliques, and kinship , 1995, Human nature.

[48]  Eric Gilbert,et al.  Predicting tie strength in a new medium , 2012, CSCW.

[49]  Ravi Kumar,et al.  Structure and evolution of online social networks , 2006, KDD '06.

[50]  J L Andersson,et al.  Social Network Size Affects Neural Circuits in Macaques , 2011, Science.

[51]  Penelope A. Lewis,et al.  Ventromedial prefrontal volume predicts understanding of others and social network size , 2011, NeuroImage.

[52]  Jure Leskovec,et al.  Worldwide Buzz: Planetary-Scale Views on an Instant-Messaging Network , 2007, WWW 2008.

[53]  Robin I. M. Dunbar,et al.  Orbital prefrontal cortex volume predicts social network size: an imaging study of individual differences in humans , 2012, Proceedings of the Royal Society B: Biological Sciences.

[54]  D. Krackhardt,et al.  Activating Cross-Boundary Knowledge: The Role of Simmelian Ties in the Generation of Innovations , 2010 .

[55]  Marco Conti,et al.  Information diffusion in OSNs: the impact of nodes' sociality , 2014, SAC.

[56]  Krishna P. Gummadi,et al.  A measurement-driven analysis of information propagation in the flickr social network , 2009, WWW '09.

[57]  Daniele Quercia,et al.  The Social World of Twitter: Topics, Geography, and Emotions , 2012, ICWSM.

[58]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[59]  Stephanie Forrest,et al.  Email networks and the spread of computer viruses. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[61]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[62]  Krishna P. Gummadi,et al.  Measurement and analysis of online social networks , 2007, IMC '07.

[63]  Thorsten Strufe,et al.  A survey on decentralized Online Social Networks , 2014, Comput. Networks.

[64]  E. David,et al.  Networks, Crowds, and Markets: Reasoning about a Highly Connected World , 2010 .

[65]  I. N. A. C. I. J. H. Fowler Book Review: Connected: The surprising power of our social networks and how they shape our lives. , 2009 .

[66]  Bruce T. Milne,et al.  The complex structure of hunter–gatherer social networks , 2007, Proceedings of the Royal Society B: Biological Sciences.

[67]  Jari Saramäki,et al.  Persistence of social signatures in human communication , 2012, Proceedings of the National Academy of Sciences.

[68]  Neil Roberts,et al.  Different association between intentionality competence and prefrontal volume in left- and right-handers , 2014, Cortex.

[69]  R. Burt Structural Holes versus Network Closure as Social Capital , 2001 .

[70]  Andrea Passarella,et al.  Egocentric online social networks: Analysis of key features and prediction of tie strength in Facebook , 2013, Comput. Commun..

[71]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[72]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[73]  Esteban Moro Egido,et al.  Time as a limited resource: Communication Strategy in Mobile Phone Networks , 2013, Soc. Networks.

[74]  I. Jolliffe Principal Component Analysis , 2002 .

[75]  B. Bollobás The evolution of random graphs , 1984 .

[76]  Jens F. Binder,et al.  Relationships and the social brain: integrating psychological and evolutionary perspectives. , 2012, British journal of psychology.

[77]  Marco Conti,et al.  Ego networks in Twitter: An experimental analysis , 2013, INFOCOM.

[78]  Davide Gazzè,et al.  Towards a Characterization of Egocentric Networks in Online Social Networks , 2011, OTM Workshops.

[79]  Alessandro Vespignani,et al.  Modeling Users' Activity on Twitter Networks: Validation of Dunbar's Number , 2011, PloS one.

[80]  Sonja Buchegger,et al.  PeerSoN: P2P social networking: early experiences and insights , 2009, SNS '09.

[81]  Virgílio A. F. Almeida,et al.  New kid on the block: exploring the google+ social graph , 2012, Internet Measurement Conference.

[82]  Marco Conti,et al.  Ego-net digger: a new way to study ego networks in online social networks , 2012, HotSocial '12.

[83]  Manuel Cebrián,et al.  Limited communication capacity unveils strategies for human interaction , 2013, Scientific Reports.

[84]  Hassan Khosravi,et al.  Transaction-based link strength prediction in a social network , 2013, 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM).

[85]  Jimmy J. Lin,et al.  Information network or social network?: the structure of the twitter follow graph , 2014, WWW.

[86]  Pietro Liò,et al.  Size Matters: Variation in Personal Network Size, Personality and Effect on Information Transmission , 2009, 2009 International Conference on Computational Science and Engineering.

[87]  S. Roberts Constraints on Social Networks , 2010 .

[88]  Feng Xia,et al.  Exploiting Social Relationship to Enable Efficient Replica Allocation in Ad-hoc Social Networks , 2014, IEEE Transactions on Parallel and Distributed Systems.

[89]  Stanley Milgram,et al.  An Experimental Study of the Small World Problem , 1969 .