The Drug Guru Project

[1]  Richard A. Lewis A general method for exploiting QSAR models in lead optimization. , 2005, Journal of medicinal chemistry.

[2]  W. Price,et al.  Nonpeptide angiotensin II receptor antagonists: the discovery of a series of N-(biphenylylmethyl)imidazoles as potent, orally active antihypertensives. , 1991, Journal of medicinal chemistry.

[3]  E. LaVoie,et al.  Bioisosterism: A Rational Approach in Drug Design. , 1996, Chemical reviews.

[4]  Ajay,et al.  Kinase patent space visualization using chemical replacements. , 2006, Journal of medicinal chemistry.

[5]  Z. Rankovic,et al.  Medicinal chemistry of hERG optimizations: Highlights and hang-ups. , 2006, Journal of medicinal chemistry.

[6]  Christopher A. Lipinski,et al.  Chapter 27. Bioisosterism in Drug Design , 1986 .

[7]  Xiaoqi Chen,et al.  Chapter 32. The use of bioisosteric groups in lead optimization , 2003 .

[8]  Markus Wagener,et al.  The Quest for Bioisosteric Replacements , 2006, J. Chem. Inf. Model..

[9]  A. Spatola Chapter 19. Peptides of the Hypothalamus , 1981 .

[10]  L. Hasvold,et al.  Synthesis and structure-activity relationships of 2-pyridones: a novel series of potent DNA gyrase inhibitors as antibacterial agents. , 1996, Journal of medicinal chemistry.

[11]  Robert P. Sheridan,et al.  Molecular Transformations as a Way of Finding and Exploiting Consistent Local QSAR , 2006, J. Chem. Inf. Model..

[12]  István Ujváry,et al.  Extended Summary: BIOSTER—a database of structurally analogous compounds , 1997 .

[13]  J. Rudinger The Design of Peptide Hormone Analogs , 1971 .

[14]  N. Meanwell Synopsis of some recent tactical application of bioisosteres in drug design. , 2011, Journal of medicinal chemistry.

[15]  A. D. Rodrigues,et al.  Design and biological activity of (S)-4-(5-([1-(3-chlorobenzyl)-2-oxopyrrolidin-3-ylamino]methyl)imidazol-1-ylmethyl)benzonitrile, a 3-aminopyrrolidinone farnesyltransferase inhibitor with excellent cell potency. , 2001, Journal of medicinal chemistry.

[16]  Peter Ertl,et al.  Cheminformatics Analysis of Organic Substituents: Identification of the Most Common Substituents, Calculation of Substituent Properties, and Automatic Identification of Drug-like Bioisosteric Groups , 2003, J. Chem. Inf. Comput. Sci..

[17]  Gavin Harper,et al.  Drug rings database with web interface. A tool for identifying alternative chemical rings in lead discovery programs. , 2003, Journal of medicinal chemistry.

[18]  A Burger,et al.  Isosterism and bioisosterism in drug design. , 1991, Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques.

[19]  Robert P. Sheridan,et al.  The Most Common Chemical Replacements in Drug-Like Compounds , 2002, J. Chem. Inf. Comput. Sci..

[20]  P. Hajduk,et al.  Cheminformatic tools for medicinal chemists. , 2010, Journal of medicinal chemistry.

[21]  T. Lampe,et al.  Imidazo[5,1-f][1,2,4]triazin-4(3H)-ones, a new class of potent PDE 5 inhibitors , 2002 .

[22]  Andrew G. Leach,et al.  Matched molecular pairs as a guide in the optimization of pharmaceutical properties; a study of aqueous solubility, plasma protein binding and oral exposure. , 2006, Journal of medicinal chemistry.

[23]  C. Thornber,et al.  Isosterism and molecular modification in drug design , 1979 .

[24]  P. Hajduk,et al.  Statistical analysis of the effects of common chemical substituents on ligand potency. , 2008, Journal of medicinal chemistry.

[25]  K. Stewart,et al.  Drug Guru: a computer software program for drug design using medicinal chemistry rules. , 2006, Bioorganic & medicinal chemistry.