Numerical modelling of atmospheric pressure gas discharges leading to plasma production

In this paper, we give a detailed review of recent work carried out on the numerical characterization of non-thermal gas discharge plasmas in air at atmospheric pressure. First, we briefly describe the theory of discharge development for dielectric barrier discharges, which is central to the production of non-equilibrium plasma, and we present a hydrodynamic model to approximate the evolution of charge densities. The model consists of the continuity equations for electrons, positive and negative ions coupled to Poisson's equation for the electric field. We then describe features of the finite element flux corrected transport algorithm, which has been developed to specifically aim for accuracy (no spurious diffusion or oscillations), efficiency (through the use of unstructured grids) and ease of extension to complex 3D geometries in the framework of the hydrodynamic model in gas discharges. We summarize the numerical work done by other authors who have applied different methods to various models and then we present highlights of our own work, which includes code validation, comparisons with existing results and modelling of radio frequency systems, dc discharges, secondary effects such as photoionization and plasma production in the presence of dielectrics. The extension of the code to 3D for more realistic simulations is demonstrated together with the adaptive meshing technique, which serves to achieve higher efficiency. Finally, we illustrate the versatility of our scheme by using it to simulate the transition from non-thermal to thermal discharges.We conclude that numerical modelling and, in particular, the extension to 3D can be used to shed new light on the processes involved with the production and control of atmospheric plasma, which plays an important role in a host of emerging technologies.

[1]  M. Pietralla,et al.  Two-dimensional simulation of filaments in barrier discharges , 1999 .

[2]  Yuriy Serdyuk,et al.  The propagation of positive streamers in a weak and uniform background electric field , 2001 .

[3]  K. Hashimoto,et al.  The reduction of copper oxide thin films with hydrogen plasma generated by an atmospheric-pressure glow discharge , 1996 .

[4]  Willem Hundsdorfer,et al.  Spontaneous branching of anode-directed streamers between planar electrodes. , 2001, Physical review letters.

[5]  P. Williams,et al.  Two‐dimensional studies of streamers in gases , 1987 .

[6]  Gerhard J. Pietsch,et al.  Two-dimensional modelling of the dielectric barrier discharge in air , 1992 .

[7]  George E. Georghiou,et al.  Secondary emission effects on streamer branching in transient non-uniform short-gap discharges , 2003 .

[8]  Wu,et al.  Formation and propagation of streamers in N2 and N2-SF6 mixtures. , 1988, Physical review. A, General physics.

[9]  N. Gherardi,et al.  Physics and chemistry in a glow dielectric barrier discharge at atmospheric pressure: diagnostics and modelling , 2003 .

[10]  L. Loeb,et al.  The Mechanism of Spark Discharge in Air at Atmospheric Pressure. I , 1940 .

[11]  George E. Georghiou,et al.  RAPID COMMUNICATION: Two-dimensional simulation of streamers using the FE-FCT algorithm , 2000 .

[12]  J. Meek,et al.  Electrical breakdown of gases , 1953 .

[13]  J. Peraire,et al.  Finite Element Flux-Corrected Transport (FEM-FCT) for the Euler and Navier-Stokes equations , 1987 .

[14]  A. Kulikovsky,et al.  Two-dimensional simulation of the positive streamer in N2 between parallel-plate electrodes , 1995 .

[15]  George E. Georghiou,et al.  Characterization of point-plane corona in air at radio frequency using a FE-FCT method , 1999 .

[16]  M. Kushner,et al.  Influence of modeling and simulation on the maturation of plasma technology: Feature evolution and reactor design , 2003 .

[17]  Koichi Takaki,et al.  Multipoint barrier discharge process for removal of NO/sub x/ from diesel engine exhaust , 2001 .

[18]  Masuhiro Kogoma,et al.  Raising of ozone formation efficiency in a homogeneous glow discharge plasma at atmospheric pressure , 1994 .

[19]  T. Hammer,et al.  Application of Plasma Technology in Environmental Techniques , 1999 .

[20]  Kui Zhang,et al.  Direct Conversion of Greenhouse Gases to Synthesis Gas and C4 Hydrocarbons over Zeolite HY Promoted by a Dielectric-Barrier Discharge , 2002 .

[21]  Mikhail S. Benilov,et al.  Modelling of low-current discharges in atmospheric-pressure air taking account of non-equilibrium effects , 2003 .

[22]  J. Lowke,et al.  Streamer propagation in air , 1997 .

[23]  P. Chapelle,et al.  Plasma diagnostic by emission spectroscopy during vacuum arc remelting , 2002 .

[24]  C. Evans,et al.  Computation of axial and radial development of discharges between plane parallel electrodes , 1977 .

[25]  E. Loth,et al.  A finite element solver for axisymmetric compressible flows , 1989 .

[26]  S. Rauf,et al.  Operation of a coplanar-electrode plasma display panel cell , 1999 .

[27]  Bardsley,et al.  Simulation of negative-streamer dynamics in nitrogen. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  A. Kulikovsky The structure of streamers in N2. II. Two-dimensional simulation , 1994 .

[29]  Tzeng,et al.  Development of an electron avalanche and its transition into streamers. , 1988, Physical review. A, General physics.

[30]  T. Ledig,et al.  Self-consistent modelling of a helium gas discharge , 1992 .

[31]  Gerhard J. Pietsch,et al.  The development of dielectric barrier discharges in gas gaps and on surfaces , 2000 .

[32]  S. Haydon,et al.  Laboratory investigations of pulsed RF plasmas relevant to CW arc pluming at high-power aerials. Part 2: Relevance of scale-model studies based on pulsed RF techniques , 1984 .

[33]  Mark J. Kushner,et al.  Ion composition of expanding microdischarges in dielectric barrier discharges , 1998 .

[34]  L. Loeb THE MECHANISM OF SPARK DISCHARGE IN AIR AT ATMOSPHERIC PRESSURE. , 1929, Science.

[35]  F. Peek Dielectric Phenomena in High Voltage Engineering , 2002 .

[36]  B. Eliasson,et al.  Modeling and applications of silent discharge plasmas , 1991 .

[37]  A. Kulikovsky,et al.  RAPID COMMUNICATION: The role of the absorption length of photoionizing radiation in streamer dynamics in weak fields: a characteristic scale of ionization domain , 2000 .

[38]  C. Mayoux,et al.  Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier , 1998 .

[39]  S. Pancheshnyi,et al.  COMMENT: Comments on `The role of photoionization in positive streamer dynamics' , 2001 .

[40]  J. Anderson,et al.  Modern Compressible Flow: With Historical Perspective , 1982 .

[41]  Mounir Laroussi,et al.  Biological decontamination by nonthermal plasmas , 2000 .

[42]  Hiroshi Imanaka,et al.  A glow-discharge approach for functionalization of carbon nanotubes , 2002 .

[43]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[44]  Eva Stoffels,et al.  Plasma needle: a non-destructive atmospheric plasma source for fine surface treatment of (bio)materials , 2002 .

[45]  George E. Georghiou,et al.  Simulation for the transition from non-thermal to thermal discharges , 2005 .

[46]  Three-dimensional fluid simulation of a plasma display panel cell , 2002 .

[47]  N. Babaeva,et al.  Two-dimensional modelling of positive streamer dynamics in non-uniform electric fields in air , 1996 .

[48]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[49]  Ulrich Kogelschatz,et al.  Industrial innovation based on fundamental physics , 2002 .

[50]  Mark J. Kushner,et al.  Multiple microdischarge dynamics in dielectric barrier discharges , 1998 .

[51]  U. Kogelschatz Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications , 2003 .

[52]  W. Hitchon,et al.  Simulation of breakdown in dielectric barrier discharges at atmospheric pressure , 2004 .

[53]  K. Yoshida,et al.  Computer simulation of an axially symmetric narrow discharge at high overvoltage , 1979 .

[54]  R. Bartnikas,et al.  Surface charge and photoionization effects in short air gaps undergoing discharges at atmospheric pressure , 2001 .

[55]  A. Bogaerts,et al.  Numerical modelling of gas discharge plasmas for various applications , 2002 .

[56]  Wallace M. Manheimer,et al.  Plasma science and the environment , 1997 .

[57]  U. Kogelschatz,et al.  Filamentary, patterned, and diffuse barrier discharges , 2002 .

[58]  George E. Georghiou,et al.  The effect of photoemission on the streamer development and propagation in short uniform gaps , 2001 .

[59]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[60]  H. Raether Die Entwicklung der Elektronenlawine in den Funkenkanal , 1939 .

[61]  Alan M. Cassell,et al.  Carbon nanotube growth by PECVD: a review , 2003 .

[62]  R. Morrow,et al.  The role of photoionization in streamer discharge formation in voids , 1999 .

[63]  G. Taylor The formation of a blast wave by a very intense explosion I. Theoretical discussion , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[64]  R. Morrow Theory of positive corona in SF/sub 6/ due to a voltage impulse , 1991 .

[65]  K. Höpfner,et al.  Surface Functionalization at Atmospheric Pressure by DBD-Based Pulsed Plasma Polymerization , 2000 .

[66]  R. Morrow,et al.  An implicit flux-corrected transport algorithm , 1989 .

[67]  R. Ganter,et al.  Diagnostics and modeling of a macroscopic plasma display panel cell , 2000 .

[68]  V. Veldhuizen,et al.  Pulsed positive corona streamer propagation and branching , 2002 .

[69]  George E. Georghiou,et al.  The theory of short-gap breakdown of needle point-plane gaps in air using finite-difference and finite-element methods , 1999 .

[70]  G. Georghiou,et al.  An Improved Finite-Element Flux-Corrected Transport Algorithm , 1999 .

[71]  Rainald Löhner,et al.  Adaptive remeshing for transient problems , 1989 .

[72]  H. Raether Electron avalanches and breakdown in gases , 1964 .

[73]  Masuhiro Kogoma,et al.  Appearance of stable glow discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50 Hz source , 1993 .

[74]  Seok-Hyun Lee,et al.  A study on the streamer simulation using adaptive mesh generation and FEM-FCT , 2001 .

[75]  A. Kulikovsky The role of photoionization in positive streamer dynamics , 2000 .

[76]  S. Dhali,et al.  Numerical simulation of streamers in SF6 , 1988 .

[77]  Masuhiro Kogoma,et al.  Stable glow plasma at atmospheric pressure , 1988 .

[78]  A. Kulikovsky The structure of streamers in N2. I. fast method of space-charge dominated plasma simulation , 1994 .

[79]  G. Georghiou,et al.  A two-dimensional, finite-element, flux-corrected transport algorithm for the solution of gas discharge problems , 2000 .

[80]  Vernon Cooray,et al.  3D Simulations of Streamer Branching in Air , 2003 .

[81]  Jianjun Shi,et al.  Cathode fall characteristics in a dc atmospheric pressure glow discharge , 2003 .

[82]  C. S. Davies,et al.  Computer simulation of rapidly developing gaseous discharges , 1971 .

[83]  Hyeong-Seok Kim,et al.  An investigation of FEM-FCT method for streamer corona simulation , 2000 .

[84]  Morrow Theory of negative corona in oxygen. , 1985, Physical review. A, General physics.

[85]  Mounir Laroussi,et al.  Sterilization of contaminated matter with an atmospheric pressure plasma , 1996 .

[87]  Richard P. Mildren,et al.  Enhanced performance of a dielectric barrier discharge lamp using short-pulsed excitation , 2001 .

[88]  G. Pietsch,et al.  Dynamics of dielectric barrier discharges in coplanar arrangements , 2004 .

[89]  Anthony B. Murphy,et al.  Thermal plasmas in gas mixtures , 2001 .

[90]  A. C. Metaxas,et al.  Industrial Microwave Heating , 1988 .

[91]  Anthony Krier,et al.  Powerful interface light emitting diodes for methane gas detection. . , 2000 .

[92]  Mounir Laroussi,et al.  Images of biological samples undergoing sterilization by a glow discharge at atmospheric pressure , 1999 .

[93]  M. Kushner,et al.  A model for plasma modification of polypropylene using atmospheric pressure discharges , 2003 .

[94]  U. Kortshagen,et al.  Radial structure of a low-frequency atmospheric-pressure glow discharge in helium , 2002 .

[95]  A. Kulikovsky Positive streamer between parallel plate electrodes in atmospheric pressure air , 1997 .

[96]  Kazuyoshi Takayama,et al.  Numerical and experimental study of a micro-blast wave generated by pulsed-laser beam focusing , 1998 .

[97]  R. Bartnikas,et al.  The influence of dielectric surface charge distribution upon the partial discharge behavior in short air gaps , 2001 .

[98]  G. W. Penney,et al.  Photoionization Measurements in Air, Oxygen, and Nitrogen , 1970 .

[99]  W. S. Kang,et al.  Numerical study on influences of barrier arrangements on dielectric barrier discharge characteristics , 2003 .