The Calderón problem with partial data

In this paper we improve an earlier result by Bukhgeim and Uhlmann [1], by showing that in dimension n . 3, the knowledge of the Cauchy data for the Schr?Nodinger equation measured on possibly very small subsets of the boundary determines uniquely the potential. We follow the general strategy of [1] but use a richer set of solutions to the Dirichlet problem. This implies a similar result for the problem of Electrical Impedance Tomography which consists in determining the conductivity of a body by making voltage and current measurements at the boundary.

[1]  Robert V. Kohn,et al.  Determining conductivity by boundary measurements , 1984 .

[2]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[3]  G. Lebeau,et al.  Contróle Exact De Léquation De La Chaleur , 1995 .

[4]  J. Sjöstrand,et al.  Fourier integral operators with complex-valued phase functions , 1975 .

[5]  G. Uhlmann,et al.  RECOVERING A POTENTIAL FROM PARTIAL CAUCHY DATA , 2002 .

[6]  J. Sjöstrand Fourier Integral Operators with Complex Phase Functions , 1979 .

[7]  Gunther Uhlmann,et al.  Developments in inverse problems since Calderon’s foundational paper , 1999 .

[8]  Gunther Uhlmann,et al.  Local uniqueness for the Dirichlet-to-Neumann map via the two-plane transform , 2000 .

[9]  N. Burq Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel , 1998 .

[10]  Mouez Dimassi,et al.  Spectral asymptotics in the semi-classical limit , 1999 .

[11]  Gunther Uhlmann,et al.  Hyperbolic geometry and local Dirichlet–Neumann map , 2004 .

[12]  L. Hörmander Fourier integral operators. I , 1995 .

[13]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[14]  L. Hörmander Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients , 1971 .

[15]  R. Novikov,et al.  Multidimensional inverse spectral problem for the equation —Δψ + (v(x) — Eu(x))ψ = 0 , 1988 .

[16]  Yuri Safarov,et al.  SPECTRAL ASYMPTOTICS IN THE SEMI‐CLASSICAL LIMIT (London Mathematical Society Lecture Note Series 268) , 2000 .

[17]  L. Hörmander,et al.  Fourier integral operators. II , 1972 .