The Calderón problem with partial data
暂无分享,去创建一个
G. Uhlmann | C. Kenig | G. Uhlmann | J. Sjöstrand | C. E. Kenig | J. Sjoestrand | G. Uhlmann | J. Sjoestrand
[1] Robert V. Kohn,et al. Determining conductivity by boundary measurements , 1984 .
[2] A. Calderón,et al. On an inverse boundary value problem , 2006 .
[3] G. Lebeau,et al. Contróle Exact De Léquation De La Chaleur , 1995 .
[4] J. Sjöstrand,et al. Fourier integral operators with complex-valued phase functions , 1975 .
[5] G. Uhlmann,et al. RECOVERING A POTENTIAL FROM PARTIAL CAUCHY DATA , 2002 .
[6] J. Sjöstrand. Fourier Integral Operators with Complex Phase Functions , 1979 .
[7] Gunther Uhlmann,et al. Developments in inverse problems since Calderon’s foundational paper , 1999 .
[8] Gunther Uhlmann,et al. Local uniqueness for the Dirichlet-to-Neumann map via the two-plane transform , 2000 .
[9] N. Burq. Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel , 1998 .
[10] Mouez Dimassi,et al. Spectral asymptotics in the semi-classical limit , 1999 .
[11] Gunther Uhlmann,et al. Hyperbolic geometry and local Dirichlet–Neumann map , 2004 .
[12] L. Hörmander. Fourier integral operators. I , 1995 .
[13] J. Sylvester,et al. A global uniqueness theorem for an inverse boundary value problem , 1987 .
[14] L. Hörmander. Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients , 1971 .
[15] R. Novikov,et al. Multidimensional inverse spectral problem for the equation —Δψ + (v(x) — Eu(x))ψ = 0 , 1988 .
[16] Yuri Safarov,et al. SPECTRAL ASYMPTOTICS IN THE SEMI‐CLASSICAL LIMIT (London Mathematical Society Lecture Note Series 268) , 2000 .
[17] L. Hörmander,et al. Fourier integral operators. II , 1972 .