The ℋ∞ synchronization of nonlinear Bloch systems via dynamic feedback control approach

We consider an ∞ synchronization problem in nonlinear Bloch systems. Based on Lyapunov stability theory and linear matrix inequality formulation, a dynamic feedback controller is designed to guarantee asymptotic stability of the master-slave synchronization. Moreover, this controller reduces the effect of an external disturbance to the ∞ norm constraint. A numerical example is given to validate the proposed synchronization scheme.

[1]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[2]  Leon O. Chua,et al.  Chaos Synchronization in Chua's Circuit , 1993, J. Circuits Syst. Comput..

[3]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[4]  Er-Wei Bai,et al.  Synchronization of chaotic behavior in nonlinear Bloch equations , 2003 .

[5]  Ju H. Park Chaos synchronization of nonlinear Bloch equations , 2006 .

[6]  Xiaoqun Wu,et al.  Linearly coupled synchronization of the unified chaotic systems and the Lorenz systems , 2005 .

[7]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[8]  Ju H. Park Stability criterion for synchronization of linearly coupled unified chaotic systems , 2005 .

[9]  Ju H. Park,et al.  H∞ synchronization of chaotic systems via dynamic feedback approach , 2008 .

[10]  Louis M. Pecora,et al.  Synchronizing chaotic circuits , 1991 .

[11]  Chun-Chieh Wang,et al.  A new adaptive variable structure control for chaotic synchronization and secure communication , 2004 .

[12]  Jun-an Lu,et al.  Parameter identification and backstepping control of uncertain Lü system , 2003 .

[13]  E. Mosekilde,et al.  Chaotic Synchronization: Applications to Living Systems , 2002 .

[14]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[15]  H. Yau Design of adaptive sliding mode controller for chaos synchronization with uncertainties , 2004 .

[16]  T. Liao,et al.  H∞ synchronization of chaotic systems using output feedback control design , 2007 .

[17]  Tae-Hee Lee,et al.  Adaptive Functional Projective Lag Synchronization of a Hyperchaotic Rössler System , 2009 .

[18]  A. Stoorvogel The H∞ control problem , 1992 .

[19]  Guanrong Chen,et al.  Chaos synchronization of general complex dynamical networks , 2004 .

[20]  Lee Sun-Jin From Chaos to Order , 2011 .

[21]  D. Abergel,et al.  Chaotic solutions of the feedback driven Bloch equations , 2002 .

[22]  Ju H. Park,et al.  Controlling chaotic systems via nonlinear feedback control , 2005 .

[23]  Oh-Min Kwon,et al.  LMI optimization approach to stabilization of time-delay chaotic systems , 2005 .

[24]  Guanrong Chen,et al.  A time-varying complex dynamical network model and its controlled synchronization criteria , 2004, IEEE Trans. Autom. Control..