An S-adic characterization of minimal subshifts with first difference of complexity 1 ≤ p(n+1) - p(n) ≤ 2
暂无分享,去创建一个
[1] Fabien Durand,et al. Linearly recurrent subshifts have a finite number of non-periodic subshift factors , 2000, Ergodic Theory and Dynamical Systems.
[2] Julien Cassaigne. Special Factors of Sequences with Linear Subword Complexity , 1995, Developments in Language Theory.
[3] Gérard Rauzy,et al. Représentation géométrique de suites de complexité $2n+1$ , 1991 .
[4] Axel Thue. Selected mathematical papers of Axel Thue , 1977 .
[5] Sébastien Ferenczi,et al. Complexity of sequences and dynamical systems , 1999, Discret. Math..
[6] I. Putnam,et al. Ordered Bratteli diagrams, dimension groups and topological dynamics , 1992 .
[7] Jean-Paul Allouche,et al. Sur la complexite des suites in nies , 1994 .
[8] Günter Rote. Sequences With Subword Complexity 2n , 1994 .
[9] Jean-Jacques Pansiot,et al. Complexité des Facteurs des Mots Infinis Engendrés par Morphimes Itérés , 1984, ICALP.
[10] Sébastien Ferenczi,et al. Structure of three-interval exchange transformations II: a combinatorial description of the tranjectories , 2003 .
[11] Valérie Berthé,et al. Initial powers of Sturmian sequences , 2006 .
[12] O. Bratteli. Inductive limits of finite dimensional C*-algebras , 1972 .
[13] Filippo Mignosi,et al. Morphismes sturmiens et règles de Rauzy , 1993 .
[14] Gérard Rauzy,et al. Échanges d'intervalles et transformations induites , 1979 .
[15] J. Allouche. Algebraic Combinatorics on Words , 2005 .
[16] Sébastien Ferenczi,et al. Rank and symbolic complexity , 1996, Ergodic Theory and Dynamical Systems.
[17] Christian F. Skau,et al. Substitutional dynamical systems, Bratteli diagrams and dimension groups , 1999, Ergodic Theory and Dynamical Systems.
[18] M. Boshernitzan,et al. A unique ergodicity of minimal symbolic flows with linear block growth , 1984 .
[19] Fabien Durand,et al. A characterization of substitutive sequences using return words , 1998, Discret. Math..
[20] Julien Cassaigne,et al. Complexité et facteurs spéciaux , 1997 .
[21] C. Mauduit,et al. Substitutions in dynamics, arithmetics, and combinatorics , 2002 .
[22] Gilles Didier. Combinatoire des codages de rotations , 1998 .
[23] Alfred J. van der Poorten,et al. Automatic sequences. Theory, applications, generalizations , 2005, Math. Comput..
[24] Julien Leroy,et al. Do the Properties of an S-adic Representation Determine Factor Complexity? , 2013 .
[25] G. A. Hedlund,et al. Symbolic Dynamics II. Sturmian Trajectories , 1940 .
[26] G. Rauzy. Suites à termes dans un alphabet fini , 1983 .
[27] Anatoly M. Vershik,et al. Adic models of ergodic transformations, spectral theory, substitutions, and related topics , 1992 .
[28] Julien Leroy,et al. S -adic conjecture and Bratteli diagrams , 2012, 1210.1311.
[29] Jacques Justin,et al. Episturmian words: a survey , 2008, RAIRO Theor. Informatics Appl..
[30] Julien Leroy. Some improvements of the S-adic conjecture , 2012, Adv. Appl. Math..
[31] 橋本 武久,et al. Simon Stevin「簿記論」の原型 , 2006 .
[32] Sébastien Ferenczi,et al. Languages of k-interval exchange transformations , 2008 .