Laser precision engineering: from microfabrication to nanoprocessing

Laser precision engineering is being extensively applied in industries for device microfabrication due to its unique advantages of being a dry and noncontact process, coupled with the availability of reliable light sources and affordable system cost. To further reduce the feature size to the nanometer scale, the optical diffraction limit has to be overcome. With the combination of advanced processing tools such as SPM, NSOM, transparent and metallic particles, feature sizes as small as 20 nm have been achieved by near-field laser irradiation, which has extended the application scope of laser precision engineering significantly. Meanwhile, parallel laser processing has been actively pursued to realize large-area and high-throughput nanofabrication by the use of microlens arrays (MLA). Laser thermal lithography using a DVD optical storage process has also been developed to achieve low-cost and high-speed nanofabrication. Laser interference lithography, another large area nanofabrication technique, is also capable of fabricating sub-100 nm periodic structures. To further reduce the feature size to the atomic scale, atomic lithography using laser cooling to localize atoms is being developed, bringing laser-processing technology to a new era of atomic engineering.

[1]  D. J. Lockwood,et al.  Spin-wave quantization in ferromagnetic nickel nanowires. , 2002, Physical review letters.

[2]  R. V. Duyne,et al.  Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces , 1995 .

[3]  Euan McLeod,et al.  Subwavelength direct-write nanopatterning using optically trapped microspheres. , 2008, Nature nanotechnology.

[4]  Dominique Barchiesi,et al.  Optical characterization of nanosources used in scanning near-field optical microscopy , 1995 .

[5]  Yongfeng Lu,et al.  Laser-Scanning Probe Microscope Based Nanoprocessing of Electronics Materials , 2001 .

[6]  C. Mirkin,et al.  Applications of dip-pen nanolithography. , 2007, Nature nanotechnology.

[8]  Hong‐Bo Sun,et al.  Multiple-spot parallel processing for laser micronanofabrication , 2005 .

[9]  H. J. Lee,et al.  Deep subwavelength nanolithography using localized surface plasmon modes on planar silver mask , 2005 .

[10]  T. Chong,et al.  Pulsed laser ablation in a cooled liquid environment , 2008 .

[11]  Fernando Castaño,et al.  Magnetic behavior of lithographically patterned particle arrays (invited) , 2002 .

[12]  Mordechai Rothschild,et al.  22-nm immersion interference lithography. , 2006, Optics express.

[13]  Liang Li,et al.  A combined top-down and bottom-up approach for precise placement of metal nanoparticles on silicon. , 2008, Small.

[14]  P. Stark,et al.  Breaking the diffraction barrier outside of the optical near-field with bright, collimated light from nanometric apertures , 2007, Proceedings of the National Academy of Sciences.

[15]  Cunningham,et al.  Using light as a lens for submicron, neutral-atom lithography. , 1992, Physical review letters.

[16]  P. Leiderer,et al.  Optical field enhancement effects in laser-assisted particle removal , 2001 .

[17]  Chunlei Du,et al.  Localized surface plasmon nanolithography with ultrahigh resolution. , 2007, Optics express.

[18]  Charles M. Lieber,et al.  Nanoelectronics from the bottom up. , 2007, Nature materials.

[19]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[20]  P. Holloway,et al.  Laser‐target interactions during pulsed laser deposition of superconducting thin films , 1991 .

[21]  Jabez J. McClelland,et al.  MINIMIZING FEATURE WIDTH IN ATOM OPTICALLY FABRICATED CHROMIUM NANOSTRUCTURES , 1999 .

[22]  Shinya Abe,et al.  TeOx-based film for heat-mode inorganic photoresist mastering , 2005 .

[23]  Tow Chong Chong,et al.  Fabrication of nanostructures with laser interference lithography , 2008 .

[24]  Jorge Morgado,et al.  Near-field optical lithography of a conjugated polymer , 2003 .

[25]  Z. B. Wang,et al.  Parallel nanostructuring of GeSbTe film with particle mask , 2004 .

[26]  T. Chong,et al.  Angle effect in laser nanopatterning with particle-mask , 2004 .

[27]  T. Chong,et al.  Pulsed laser-assisted surface structuring with optical near-field enhanced effects , 2002 .

[28]  Caroline A. Ross,et al.  Properties of large-area nanomagnet arrays with 100 nm period made by interferometric lithography , 1999 .

[29]  E. Abbe Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[30]  R. Scholten,et al.  Progress towards atom lithography on iron , 2003 .

[31]  K. Komvopoulos,et al.  Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy , 2003 .

[32]  B N Chichkov,et al.  Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics. , 2003, Optics letters.

[33]  Y. Shani,et al.  Near‐field optical photomask repair with a femtosecond laser , 1999, Journal of microscopy.

[34]  J J McClelland,et al.  Laser-Focused Atomic Deposition , 1993, Science.

[35]  Klaus Piglmayer,et al.  Laser-induced surface patterning by means of microspheres , 2002 .

[36]  N. Arnold,et al.  Three-dimensional effects in dry laser cleaning , 2003 .

[37]  H. Ming,et al.  Beam manipulating by metallic nano-optic lens containing nonlinear media. , 2007, Optics express.

[38]  T. Chong,et al.  Laser assisted surface nanopatterning , 2003 .

[39]  J. Heitz,et al.  Perspectives of laser processing and chemistry , 2003 .

[40]  L. Zhang,et al.  Laser writing of a subwavelength structure on silicon (100) surfaces with particle-enhanced optical irradiation , 2000 .

[41]  Henry I. Smith,et al.  Synthesis of silicon nanowires and nanofin arrays using interference lithography and catalytic etching. , 2008, Nano letters.

[42]  P. J. Bedrossian,et al.  Magnetic force microscopy of single-domain cobalt dots patterned using interference lithography , 1996 .

[43]  M. Hong,et al.  Surface nanostructuring by femtosecond laser irradiation through near-field scanning optical microscopy , 2007 .

[44]  Q. Xie,et al.  Laser Singulation of Thin Wafers & Difficult Processed Substrates: A Niche Area over Saw Dicing , 2006 .

[45]  Nanophase change for data storage applications. , 2007, Journal of nanoscience and nanotechnology.

[46]  H. Herzig Micro-Optics : Elements, Systems And Applications , 1997 .

[47]  Theodore M. Bloomstein,et al.  Patterning of sub-50 nm dense features with space-invariant 157 nm interference lithography , 2000 .

[48]  T. Chong,et al.  Laser Precision Engineering of Glass Substrates , 2004 .

[49]  G. Somorjai,et al.  Fabrication of Size-Tunable Large-Area Periodic Silicon Nanopillar Arrays with Sub-10-nm Resolution , 2003 .

[50]  Tow Chong Chong,et al.  Direct and subdiffraction-limit laser nanofabrication in silicon , 2003 .

[51]  M. Hong,et al.  Laser ablation of solid substrates in water and ambient air , 2001 .

[52]  Wing P. Leung,et al.  Noncontact monitoring of laser ablation using a miniature piezoelectric probe to detect photoacoustic pulses in air , 1992 .

[53]  Andrea Notargiacomo,et al.  Nanofabrication by scanning probe microscope lithography: A review , 2005 .

[54]  Boris N. Chichkov,et al.  Direct-write subwavelength structuring with femtosecond laser pulses , 2005 .

[55]  T. Chong,et al.  Pulsed-laser assisted nanopatterning of metallic layers combined with atomic force microscopy , 2002 .

[56]  Mark L. Brongersma,et al.  Plasmonics: the next chip-scale technology , 2006 .

[57]  Katsuhisa Aratani,et al.  High-Resolution Blue-Laser Mastering Using an Inorganic Photoresist. , 2003 .

[58]  Xianfan Xu,et al.  Enhanced optical near field from a bowtie aperture , 2006 .

[59]  A. Kumar,et al.  Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning , 2006 .

[60]  Nicholas Murphy-DuBay,et al.  Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture. , 2008, Optics express.

[61]  Eric Audouard,et al.  Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy , 2002 .

[62]  Henry I. Smith,et al.  Low cost nanolithography with nanoaccuracy , 2001 .

[63]  Richard Martel,et al.  Simple fabrication scheme for sub-10 nm electrode gaps using electron-beam lithography , 2002 .

[64]  Boris N. Chichkov,et al.  Far-field and near-field material processing with. femtosecond laser pulses , 1999 .

[65]  K. Komvopoulos,et al.  Surface nanostructuring by nano-/femtosecond laser-assisted scanning force microscopy , 2005 .

[66]  L S Tan,et al.  Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance. , 2008, Optics express.

[67]  Gregor Langer,et al.  Femtosecond laser fabrication of apertures on two-dimensional microlens arrays , 2006 .

[68]  Behringer,et al.  High-contrast, high-resolution focusing of neutral atoms using light forces. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[69]  Zengbo Wang,et al.  Near-field laser parallel nanofabrication of arbitrary-shaped patterns , 2007 .

[70]  P. Willmott,et al.  Pulsed laser vaporization and deposition , 2000 .

[71]  Satoshi Kawata,et al.  Apertureless optical near-field fabrication using an atomic force microscope on photoresists , 2002 .

[72]  Tzu-Hung Chuang,et al.  Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice , 2007 .

[73]  R. Anderson Close-up imaging of documents and displays with lens arrays. , 1979, Applied optics.

[74]  T. S. Ong,et al.  Carbon nanoparticles based nonlinear optical liquid , 2004 .

[75]  M. F. Chen,et al.  An efficient method to improve the proximity effect for electron beam optical disc mastering , 2005 .

[76]  Minoru Obara,et al.  Nanostructuring of silicon surface by femtosecond laser pulse mediated with enhanced near-field of gold nanoparticles , 2006 .

[77]  Koji Sugioka,et al.  Advanced materials processing based on interaction of laser beam and a medium , 2003 .

[78]  Zhaoning Yu,et al.  Circuit fabrication at 17 nm half-pitch by nanoimprint lithography. , 2006, Nano letters.

[79]  Harukazu Miyamoto,et al.  Nanosize fabrication using etching of phase-change recording films , 2004 .

[80]  Tow Chong Chong,et al.  Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laser , 2005 .

[81]  G. Dearden,et al.  Optical near-field distribution in an asymmetrically illuminated tip–sample system for laser/STM nanopatterning , 2007 .

[82]  A. Hawryluk,et al.  Fabrication of sub‐0.5 μm diameter cobalt dots on silicon substrates and photoresist pedestals on 50 cm×50 cm glass substrates using laser interference lithograph , 1996 .

[83]  A. Requicha,et al.  Plasmonics—A Route to Nanoscale Optical Devices , 2001 .

[84]  S. A. Lee,et al.  Light force cooling, focusing, and nanometer-scale deposition of aluminum atoms. , 1995, Optics letters.

[85]  M. Hong,et al.  Laser nano-fabrication of large-area plasmonic structures and surface plasmon resonance tuning by thermal effect , 2008 .

[86]  Sreemanth M. V. Uppuluri,et al.  Nanolithography using high transmission nanoscale bowtie apertures. , 2006, Nano letters.

[87]  Zengbo Wang,et al.  Ultrafast-laser-induced parallel phase-change nanolithography , 2006 .

[88]  S. Urabe,et al.  Atom lithography with ytterbium beam , 2003 .

[89]  M. Kryder,et al.  Near‐field magneto‐optics and high density data storage , 1992 .

[90]  Mark L. Schattenburg,et al.  Optically matched trilevel resist process for nanostructure fabrication , 1995 .

[91]  Borja Sepúlveda,et al.  Optical antennas based on coupled nanoholes in thin metal films , 2007 .

[92]  T. Wágner,et al.  Selective wet-etching of undoped and silver photodoped amorphous thin films of chalcogenide glasses in inorganic alkaline solutions , 2006 .

[93]  M. Hong,et al.  Laser Nano-Patterning for Large Area Nanostructure Fabrication , 2008 .

[94]  Satoshi Kawata,et al.  Finer features for functional microdevices , 2001, Nature.

[95]  Yongfeng Lu,et al.  Mechanisms of photoluminescence from silicon nanocrystals formed by pulsed-laser deposition in argon and oxygen ambient , 2003 .

[96]  T. Chong,et al.  Models for laser ablation of polymers. , 2003, Chemical reviews.