Lower Bounds on the Maximum Delay Margin by Analytic Interpolation

We study the delay margin problem in the context of recent works by T. Qi, J. Zhu, and J. Chen, where a sufficient condition for the maximal delay margin is formulated in terms of an interpolation problem obtained after introducing a rational approximation. Instead we omit the approximation step and solve the same problem directly using techniques from function theory and analytic interpolation. Furthermore, we introduce a constant shift in the domain of the interpolation problem. In this way we are able to improve on their lower bound for the maximum delay margin.

[1]  Chung-Yao Kao,et al.  Stability analysis of systems with uncertain time-varying delays , 2007, Autom..

[2]  Tryphon T. Georgiou,et al.  The structure of state covariances and its relation to the power spectrum of the input , 2002, IEEE Trans. Autom. Control..

[3]  R. Firoozian Feedback Control Theory , 2009 .

[4]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1997, IEEE Trans. Autom. Control..

[5]  P. Khargonekar,et al.  Non-Euclidian metrics and the robust stabilization of systems with parameter uncertainty , 1985 .

[6]  Ryozo Nagamune,et al.  Optimization-based computation of analytic interpolants of bounded complexity , 2005, Syst. Control. Lett..

[7]  Jing Zhu,et al.  Fundamental Limits on Uncertain Delays: When Is a Delay System Stabilizable by LTI Controllers? , 2017, IEEE Transactions on Automatic Control.

[8]  M. Nimchek Banach spaces of analytic functions , 1996 .

[9]  Huanshui Zhang,et al.  Achievable delay margin using LTI control for plants with unstable complex poles , 2017, Science China Information Sciences.

[10]  Jie Chen,et al.  Introduction to Time-Delay Systems , 2003 .

[11]  Johan Karlsson,et al.  The Inverse Problem of Analytic Interpolation With Degree Constraint and Weight Selection for Control Synthesis , 2010, IEEE Transactions on Automatic Control.

[12]  J. William Helton,et al.  Classical Control Using H∞ Methods: Theory, Optimization, and Design , 1998 .

[13]  Vladimir L. Kharitonov,et al.  Stability of Time-Delay Systems , 2003, Control Engineering.

[14]  S. Skogestad,et al.  Representation of uncertain time delays in the H∞ framework‡ , 1994 .

[15]  Leonid Mirkin,et al.  On the robustness of sampled-data systems to uncertainty in continuous-time delays , 2010, 49th IEEE Conference on Decision and Control (CDC).

[16]  Daniel E. Miller,et al.  On the Achievable Delay Margin Using LTI Control for Unstable Plants , 2007, IEEE Transactions on Automatic Control.

[17]  S. Niculescu,et al.  Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach , 2007 .

[18]  Johan Karlsson,et al.  Passivity-preserving model reduction by analytic interpolation , 2007 .

[19]  Johan Karlsson,et al.  On Degree-Constrained Analytic Interpolation With Interpolation Points Close to the Boundary , 2009, IEEE Transactions on Automatic Control.

[20]  J. William Helton,et al.  Classical Control Using H-Infinity Methods: Theory, Optimization, and Design , 1998 .

[21]  Tryphon T. Georgiou,et al.  A generalized entropy criterion for Nevanlinna-Pick interpolation with degree constraint , 2001, IEEE Trans. Autom. Control..

[22]  Jie Chen,et al.  Fundamental bounds on delay margin: When is a delay system stabilizable? , 2014, Proceedings of the 33rd Chinese Control Conference.

[23]  D. Youla,et al.  Single-loop feedback-stabilization of linear multivariable dynamical plants , 1974, Autom..

[24]  Z. Nehari Bounded analytic functions , 1950 .

[25]  Kemin Zhou,et al.  Robust stability of uncertain time-delay systems , 2000, IEEE Trans. Autom. Control..

[26]  Huanshui Zhang,et al.  Further Results on the Achievable Delay Margin Using LTI Control , 2016, IEEE Transactions on Automatic Control.

[27]  Hitay Özbay,et al.  Robust control of infinite dimensional systems , 2015, Encyclopedia of Systems and Control.

[28]  C. Nett,et al.  A new method for computing delay margins for stability of linear delay systems , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.