A real‐valued auction algorithm for optimal transport
暂无分享,去创建一个
[1] Dimitri P. Bertsekas,et al. A new algorithm for the assignment problem , 1981, Math. Program..
[2] N. Trudinger,et al. Regularity of Potential Functions of the Optimal Transportation Problem , 2005 .
[3] J. A. Cuesta-Albertos,et al. A characterization for the solution of the Monge--Kantorovich mass transference problem , 1993 .
[4] Luca Dieci,et al. The boundary method for semi-discrete optimal transport partitions and Wasserstein distance computation , 2017, J. Comput. Appl. Math..
[5] O. H. Brownlee,et al. ACTIVITY ANALYSIS OF PRODUCTION AND ALLOCATION , 1952 .
[6] Péter Kovács,et al. Minimum-cost flow algorithms: an experimental evaluation , 2015, Optim. Methods Softw..
[7] Dimitri P. Bertsekas,et al. A generic auction algorithm for the minimum cost network flow problem , 1993, Comput. Optim. Appl..
[8] C. Villani. Topics in Optimal Transportation , 2003 .
[9] Dimitri P. Bertsekas,et al. The auction algorithm for the minimum cost network flow problem , 1989 .
[10] Adam M. Oberman,et al. Numerical solution of the Optimal Transportation problem using the Monge-Ampère equation , 2012, J. Comput. Phys..
[11] Quentin Mérigot. A Comparison of Two Dual Methods for Discrete Optimal Transport , 2013, GSI.
[12] Dimitri P. Bertsekas,et al. Auction algorithms for network flow problems: A tutorial introduction , 1992, Comput. Optim. Appl..
[13] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[14] H. Kuhn. The Hungarian method for the assignment problem , 1955 .
[15] Marco Cuturi,et al. Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.
[16] Gabriel Peyré,et al. Computational Optimal Transport , 2018, Found. Trends Mach. Learn..