A Hierarchical Numerical Journey Through the Nasal Cavity: from Nose-Like Models to Real Anatomies

The immense increase of computational power in the past decades led to an evolution of numerical simulations in all kind of engineering applications. New developments in medical technologies in rhinology employ computational fluid dynamics methods to explore pathologies from a fluid-mechanics point of view. Such methods have grown mature and are about to enter daily clinical use to support doctors in decision making. In light of the importance of effective respiration on patient comfort and health care costs, individualized simulations ultimately have the potential to revolutionize medical diagnosis, drug delivery, and surgery planning. The present article reviews experiments, simulations, and algorithmic approaches developed at RWTH Aachen University that have evolved from fundamental physical analyses using nose-like models to patient-individual analyses based on realistic anatomies and high resolution computations in hierarchical manner.

[1]  Huizing Eh,et al.  Treatment of inferior turbinate pathology: a review and critical evaluation of the different techniques. , 2000 .

[2]  M. Benninger,et al.  The development of the Rhinosinusitis Disability Index. , 1997, Archives of otolaryngology--head & neck surgery.

[3]  Timothy L. Smith,et al.  Surgical management of adult inferior turbinate hypertrophy , 2009, The Laryngoscope.

[4]  Klaus H. Maier-Hein,et al.  The Medical Imaging Interaction Toolkit: challenges and advances , 2013, International Journal of Computer Assisted Radiology and Surgery.

[5]  B. Chopard,et al.  Theory and applications of an alternative lattice Boltzmann grid refinement algorithm. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  David Elad,et al.  The Air-Conditioning Capacity of the Human Nose , 2005, Annals of Biomedical Engineering.

[7]  Thomas Hummel,et al.  Quality of life following nasal surgery , 2010, The Laryngoscope.

[8]  Andreas Lintermann,et al.  Investigations of Human Nasal Cavity Flows Based on a Lattice-Boltzmann Method , 2011 .

[9]  Andreas Lintermann,et al.  Fluid mechanics based classification of the respiratory efficiency of several nasal cavities , 2013, Comput. Biol. Medicine.

[10]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[11]  Andreas Lintermann,et al.  Numerical Simulation of Nasal Cavity Flow Based on a Lattice-Boltzmann Method , 2010 .

[12]  Jutta Docter,et al.  JUQUEEN: IBM Blue Gene/Q® Supercomputer System at the Jülich Supercomputing Centre , 2015 .

[13]  D. Kennedy,et al.  Long‐term Results of Functional Endoscopic Sinus Surgery , 1998, The Laryngoscope.

[14]  S. Houser,et al.  The diagnosis and management of empty nose syndrome. , 2009, Otolaryngologic clinics of North America.

[15]  H. Stammberger,et al.  Functional endoscopic sinus surgery , 1990, European Archives of Oto-Rhino-Laryngology.

[16]  Werner Krybus,et al.  Computer-assisted surgery , 1990, IEEE Computer Graphics and Applications.

[17]  Michael Damm,et al.  Impact of Functional Endoscopic Sinus Surgery on Symptoms and Quality of Life in Chronic Rhinosinusitis , 2002, The Laryngoscope.

[18]  R. C. Schroter,et al.  Transport Phenomena in the Human Nasal Cavity: A Computational Model , 1998, Annals of Biomedical Engineering.

[19]  Naveen D. Bhandarkar,et al.  Outcomes of surgery for inferior turbinate hypertrophy , 2010, Current opinion in otolaryngology & head and neck surgery.

[20]  K. Chien,et al.  Predictions of Channel and Boundary-Layer Flows with a Low-Reynolds-Number Turbulence Model , 1982 .

[21]  A. Heuer,et al.  過冷却Lennard‐Jones流体におけるホッピング:準ベイスン,待ち時間分布および拡散 , 2003 .

[22]  D. Wilcox Turbulence modeling for CFD , 1993 .

[23]  Jianwei Li,et al.  Parallel netCDF: A High-Performance Scientific I/O Interface , 2003, ACM/IEEE SC 2003 Conference (SC'03).

[24]  Wolfgang Schröder,et al.  Investigation of the impact of the geometry on the nose flow , 2006 .

[25]  Willy Dörfler,et al.  Parallel dilute particulate flow simulations in the human nasal cavity , 2016 .

[26]  Shouju Li,et al.  Influence of nasal structure on the distribution of airflow in nasal cavity. , 2008, Rhinology.

[27]  Wolfgang Schröder,et al.  Numerical investigation of the three-dimensional flow in a human lung model. , 2008, Journal of biomechanics.

[28]  M. Meinke,et al.  Lattice-Boltzmann Solutions with Local Grid Refinement for Nasal Cavity Flows , 2013 .

[29]  D. Hartmann,et al.  An adaptive multilevel multigrid formulation for Cartesian hierarchical grid methods , 2008 .

[30]  M. Liou,et al.  A New Flux Splitting Scheme , 1993 .

[31]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[32]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[33]  H. Chang,et al.  Correlations between flow resistance and geometry in a model of the human nose. , 1993, Journal of applied physiology.

[34]  Gene H. Golub,et al.  Optimal Surface Smoothing as Filter Design , 1996, ECCV.

[35]  Andreas Lintermann,et al.  Massively parallel grid generation on HPC systems , 2014 .

[36]  Rolf Adams,et al.  Seeded Region Growing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Mike Folk,et al.  Balancing performance and preservation lessons learned with HDF5 , 2010, US-DPIF '10.

[38]  Paolo Dario,et al.  A biomechanical analysis of bi-manual coordination and depth perception in virtual laparoscopic surgery , 2006 .

[39]  David Elad,et al.  Physical stresses at the air-wall interface of the human nasal cavity during breathing. , 2006, Journal of applied physiology.

[40]  Ibrahim Lutfi Shuaib,et al.  Numerical study of inspiratory and expiratory flow in a human nasal cavity , 2011 .

[41]  William J. Schroeder,et al.  The Visualization Toolkit , 2005, The Visualization Handbook.

[42]  M. Finck,et al.  Simulation of nasal flow by lattice Boltzmann methods , 2007, Comput. Biol. Medicine.

[43]  D. J. Taylor,et al.  Decomposition and Description of the Nasal Cavity Form , 2011, Annals of Biomedical Engineering.

[44]  Vipin Kumar,et al.  A Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering , 1998, J. Parallel Distributed Comput..

[45]  P. Moin,et al.  Effects of the Computational Time Step on Numerical Solutions of Turbulent Flow , 1994 .

[46]  Michael M. Resch,et al.  High Performance Computing on Vector Systems 2011 , 2012 .

[47]  A. Lintermann EFFICIENT PARALLEL GEOMETRY DISTRIBUTION FOR THE SIMULATION OF COMPLEX FLOWS , 2016 .

[48]  Ulrich Simon,et al.  First Steps to Develop and Validate a CFPD Model in Order to Support the Design of Nose-to-Brain Delivered Biopharmaceuticals , 2016, Pharmaceutical Research.

[49]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[50]  W Schröder,et al.  On the assumption of steadiness of nasal cavity flow. , 2010, Journal of biomechanics.

[51]  Heinrich Rudert,et al.  Konzept zur Messung der Lebensqualität bei Patienten mit chronischer Sinusitis , 1999 .

[52]  Guillaume Houzeaux,et al.  Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation , 2016, Comput. Biol. Medicine.

[53]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[54]  H Masing,et al.  [Experimental studies on the flow in nose models]. , 1967, Archiv fur klinische und experimentelle Ohren- Nasen- und Kehlkopfheilkunde.

[55]  C. Gross,et al.  How i do it head and neck and plastic surgery a targeted problem and its solution: Endoscopic septoplasty , 1994 .

[56]  Stefan Zachow,et al.  CFD simulation of nasal airflow: Towards treatment planning for functional rhinosurgery , 2006 .

[57]  R. C. Schroter,et al.  Dynamics of airflow in a short inhalation , 2015, Journal of The Royal Society Interface.

[58]  Jeffrey S. Vetter,et al.  Exploiting Lustre File Joining for Effective Collective IO , 2007, Seventh IEEE International Symposium on Cluster Computing and the Grid (CCGrid '07).

[59]  D. Doorly,et al.  Modelling nasal airflow using a Fourier descriptor representation of geometry , 2009 .

[60]  Wolfgang Schröder,et al.  Numerical simulation of the flow field in a model of the nasal cavity , 2003 .

[61]  Tamás István Józsa,et al.  VII European Congress on Computational Methods in Applied Sciences and Engineering , 2016 .

[62]  Jiyuan Tu,et al.  Detailed micro-particle deposition patterns in the human nasal cavity influenced by the breathing zone , 2015 .

[63]  P. Lallemand,et al.  Momentum transfer of a Boltzmann-lattice fluid with boundaries , 2001 .

[64]  Christoph Brücker,et al.  EXPERIMENTAL STUDY OF VELOCITY FIELDS IN A MODEL OF HUMAN NASAL CAVITY BY DPIV , 1999, Proceeding of First Symposium on Turbulence and Shear Flow Phenomena.