Optical interference probe of biofilm hydrology: label-free characterization of the dynamic hydration behavior of native biofilms

Abstract. Biofilm produced by Escherichia coli (E. coli) or Pseudomonas aeruginosa (P. aeruginosa) on quartz or polystyrene is removed from the culture medium and drained. Observed optical interference fringes indicate the presence of a layer of uniform thickness with refractive index different from air-dried biofilm. Fringe wavelengths indicate that layer optical thickness is <20  μm or 1 to 2 orders of magnitude thinner than the biofilm as measured by confocal Raman microscopy or fluorescence imaging of the bacteria. Raman shows that films have an alginate-like carbohydrate composition. Fringe amplitudes indicate that the refractive index of the interfering layer is higher than dry alginate. Drying and rehydration nondestructively thins and restores the interfering layer. The strength of the 1451-nm near infrared water absorption varies in unison with thickness. Absorption and layer thickness are proportional for films with different bacteria, substrates, and growth conditions. Formation of the interfering layer is general, possibly depending more on the chemical nature of alginate-like materials than bacterial processes. Films grown during the exponential growth phase produce no observable interference fringes, indicating requirements for layer formation are not met, possibly reflecting bacterial activities at that stage. The interfering layer might provide a protective environment for bacteria when water is scarce.

[1]  J. Costerton Overview of microbial biofilms , 1995, Journal of Industrial Microbiology.

[2]  E. Ivanova,et al.  Bacterial Extracellular Polysaccharides Involved in Biofilm Formation , 2009, Molecules.

[3]  M. Parsek,et al.  A Sticky Business: the Extracellular Polymeric Substance Matrix of Bacterial Biofilms , 2004 .

[4]  Carlos C. Goller,et al.  Roles of pgaABCD Genes in Synthesis, Modification, and Export of the Escherichia coli Biofilm Adhesin Poly-β-1,6-N-Acetyl-d-Glucosamine , 2008, Journal of bacteriology.

[5]  A. K. Camper,et al.  Movement, Replication, and Emigration Rates of Individual Bacteria in a Biofilm , 2003, Microbial Ecology.

[6]  K. Petkov,et al.  Optical characterization of thin chalcogenide films by multiple-angle-of-incidence ellipsometry , 2010 .

[7]  M. Rohde,et al.  The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix , 2001, Molecular microbiology.

[8]  J. Kreft,et al.  Microbial motility involvement in biofilm structure formation--a 3D modelling study. , 2007, Water science and technology : a journal of the International Association on Water Pollution Research.

[9]  D. Wozniak,et al.  Pseudomonas biofilm matrix composition and niche biology. , 2012, FEMS microbiology reviews.

[10]  Ivan D. Nikolov,et al.  Dispersion Properties of Optical Polymers , 2009 .

[11]  Michael Y. Galperin,et al.  Cyclic di-GMP: the First 25 Years of a Universal Bacterial Second Messenger , 2013, Microbiology and Molecular Reviews.

[12]  G. Herzberg Infrared and raman spectra , 1964 .

[13]  R. Redfield Is quorum sensing a side effect of diffusion sensing? , 2002, Trends in microbiology.

[14]  Rolf Bos,et al.  Electric double layer interactions in bacterial adhesion to surfaces , 2002 .

[15]  W. Flygare Molecular structure and dynamics , 1978 .

[16]  S. Dhahri,et al.  An in vivo study of electrical charge distribution on the bacterial cell wall by atomic force microscopy in vibrating force mode. , 2015, Nanoscale.

[17]  Huaping Tan,et al.  Alginate-Based Biomaterials for Regenerative Medicine Applications , 2013, Materials.

[18]  A. Rajulu,et al.  Miscibility studies of sodium alginate/poly(vinyl alcohol) blend in water by viscosity, ultrasonic, and refractive index methods , 2003 .

[19]  F. Schmid,et al.  Biological Macromolecules: UV‐visible Spectrophotometry , 2001 .

[20]  E. H. Linfoot Principles of Optics , 1961 .

[21]  Anthony T. Tu,et al.  Raman spectroscopy in biology: Principles and applications , 1982 .

[22]  G. O’Toole,et al.  Mechanisms of biofilm resistance to antimicrobial agents. , 2001, Trends in microbiology.

[23]  J. Ghigo,et al.  Escherichia coli biofilms. , 2008, Current topics in microbiology and immunology.

[24]  Rune Bakke,et al.  Biofilm thickness measurements by light microscopy , 1986 .

[25]  J. Saja,et al.  Experimental validation of the Knudsen effect in nanocellular polymeric foams , 2015 .

[26]  Regine Hengge,et al.  Cyclic‐di‐GMP‐mediated signalling within the σS network of Escherichia coli , 2006, Molecular microbiology.

[27]  P. Matsumura,et al.  Multiple factors underlying the maximum motility of Escherichia coli as cultures enter post-exponential growth , 1993, Journal of bacteriology.

[28]  Rajendar R. Mallepally,et al.  Superabsorbent alginate aerogels , 2013 .

[29]  I. Korendovych,et al.  Quantification of alginate by aggregation induced by calcium ions and fluorescent polycations. , 2016, Analytical biochemistry.

[30]  S. Scheiner,et al.  Relative Stability of Hydrogen and Deuterium Bonds , 1996 .

[31]  T. Jenkins,et al.  Multiple-angle-of-incidence ellipsometry , 1999 .

[32]  Tom Coenye,et al.  In vitro and in vivo model systems to study microbial biofilm formation. , 2010, Journal of microbiological methods.

[33]  Ó. Esteban,et al.  Optical constants of a sodium alginate polymer in the UV-vis range , 2009 .

[34]  Tian C. Zhang,et al.  Density, porosity, and pore structure of biofilms , 1994 .

[35]  D. Gibson,et al.  Extracellular Polysaccharides Associated with Thin Aggregative Fimbriae of Salmonella enterica Serovar Enteritidis , 2003, Journal of bacteriology.

[36]  G. Guru,et al.  Investigation on Miscibility of Sodium Alginate/Pullulan Blends , 2012, Journal of Polymers and the Environment.

[37]  R. Donlan,et al.  Biofilms: Microbial Life on Surfaces , 2002, Emerging infectious diseases.

[38]  S. Furukawa,et al.  Biofilm formation by Escherichia coli in hypertonic sucrose media. , 2009, Journal of bioscience and bioengineering.

[39]  D. Mooney,et al.  Alginate: properties and biomedical applications. , 2012, Progress in polymer science.

[40]  A. McBain,et al.  Chapter 4: In vitro biofilm models: an overview. , 2009, Advances in applied microbiology.

[41]  I. Sutherland,et al.  The biofilm matrix--an immobilized but dynamic microbial environment. , 2001, Trends in microbiology.

[42]  H. Büning-Pfaue Analysis of water in food by near infrared spectroscopy , 2003 .

[43]  J. Adler,et al.  The effect of environmental conditions on the motility of Escherichia coli. , 1967, Journal of general microbiology.