Embedded discontinuity finite element method for modeling of localized failure in heterogeneous materials with structured mesh: an alternative to extended finite element method

In this work we discuss the finite element model using the embedded discontinuity of the strain and displacement field, for dealing with a problem of localized failure in heterogeneous materials by using a structured finite element mesh. On the chosen 1D model problem we develop all the pertinent details of such a finite element approximation. We demonstrate the presented model capabilities for representing not only failure states typical of a slender structure, with crack-induced failure in an elastic structure, but also the failure state of a massive structure, with combined diffuse (process zone) and localized cracking. A robust operator split solution procedure is developed for the present model taking into account the subtle difference between the types of discontinuities, where the strain discontinuity iteration is handled within global loop for computing the nodal displacement, while the displacement discontinuity iteration is carried out within a local, element-wise computation, carried out in parallel with the Gauss-point computations of the plastic strains and hardening variables. The robust performance of the proposed solution procedure is illustrated by a couple of numerical examples. Concluding remarks are stated regarding the class of problems where embedded discontinuity finite element method (ED-FEM) can be used as a favorite choice with respect to extended FEM (X-FEM).