From simple bacterial and archaeal replicons to replication N/U-domains.

[1]  M. Debatisse,et al.  Replication dynamics: biases and robustness of DNA fiber analysis. , 2013, Journal of molecular biology.

[2]  Conrad A. Nieduszynski,et al.  Accelerated growth in the absence of DNA replication origins , 2013, Nature.

[3]  H. Masai,et al.  Replication timing regulation of eukaryotic replicons: Rif1 as a global regulator of replication timing. , 2013, Trends in genetics : TIG.

[4]  S. Bekiranov,et al.  Bubble-seq analysis of the human genome reveals distinct chromatin-mediated mechanisms for regulating early- and late-firing origins , 2013, Genome research.

[5]  O. Hyrien,et al.  DNA topoisomerase IIα controls replication origin cluster licensing and firing time in Xenopus egg extracts , 2013, Nucleic acids research.

[6]  J. Berger,et al.  Mechanisms for initiating cellular DNA replication. , 2013, Annual review of biochemistry.

[7]  D. Chattoraj,et al.  Evidence for Two Different Regulatory Mechanisms Linking Replication and Segregation of Vibrio cholerae Chromosome II , 2013, PLoS genetics.

[8]  M. Filutowicz,et al.  Plasmid R6K replication control. , 2013, Plasmid.

[9]  Duncan J. Smith,et al.  Quantitative, genome-wide analysis of eukaryotic replication initiation and termination. , 2013, Molecular cell.

[10]  J. Berger,et al.  The Bacterial DnaC Helicase Loader Is a DnaB Ring Breaker , 2013, Cell.

[11]  Todd A. Stone,et al.  Specificity and Function of Archaeal DNA Replication Initiator Proteins , 2013, Cell reports.

[12]  O. Aparicio,et al.  Location, location, location: it's all in the timing for replication origins. , 2013, Genes & development.

[13]  Alain Arneodo,et al.  Multiscale analysis of genome-wide replication timing profiles using a wavelet-based signal-processing algorithm , 2012, Nature Protocols.

[14]  D. Sherratt,et al.  Chromosome replication and segregation in bacteria. , 2012, Annual review of genetics.

[15]  Alain Arneodo,et al.  Gene organization inside replication domains in mammalian genomes , 2012 .

[16]  K. Shirahige,et al.  Telomere-binding protein Taz1 controls global replication timing through its localization near late replication origins in fission yeast. , 2012, Genes & development.

[17]  Vishnu Dileep,et al.  Mouse Rif1 is a key regulator of the replication‐timing programme in mammalian cells , 2012, The EMBO journal.

[18]  Hisao Masai,et al.  Rif1 regulates the replication timing domains on the human genome , 2012, The EMBO journal.

[19]  Rolf Bernander,et al.  Four chromosome replication origins in the archaeon Pyrobaculum calidifontis , 2012, Molecular microbiology.

[20]  Alain Arneodo,et al.  3D chromatin conformation correlates with replication timing and is conserved in resting cells , 2012, Nucleic acids research.

[21]  N. Rhind,et al.  Replication timing and its emergence from stochastic processes. , 2012, Trends in genetics : TIG.

[22]  J. Diffley,et al.  Activation of the replicative DNA helicase: breaking up is hard to do. , 2012, Current opinion in cell biology.

[23]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[24]  Benjamin Audit,et al.  Replication Fork Polarity Gradients Revealed by Megabase-Sized U-Shaped Replication Timing Domains in Human Cell Lines , 2012, PLoS Comput. Biol..

[25]  Jared M. Peace,et al.  Forkhead Transcription Factors Establish Origin Timing and Long-Range Clustering in S. cerevisiae , 2012, Cell.

[26]  Katsuhiko Shirahige,et al.  Rif1 is a global regulator of timing of replication origin firing in fission yeast. , 2012, Genes & development.

[27]  Olivier Hyrien,et al.  Do replication forks control late origin firing in Saccharomyces cerevisiae? , 2011, Nucleic acids research.

[28]  S. Bell Archaeal orc1/cdc6 proteins. , 2012, Sub-cellular biochemistry.

[29]  Ryuichiro Nakato,et al.  Origin Association of Sld3, Sld7, and Cdc45 Proteins Is a Key Step for Determination of Origin-Firing Timing , 2011, Current Biology.

[30]  Alain Arneodo,et al.  Evidence for Sequential and Increasing Activation of Replication Origins along Replication Timing Gradients in the Human Genome , 2011, PLoS Comput. Biol..

[31]  A. Donaldson,et al.  Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast , 2011, The EMBO journal.

[32]  S. Bell,et al.  Molecular machines in archaeal DNA replication. , 2011, Current opinion in chemical biology.

[33]  J. Hurwitz,et al.  Selective Bypass of a Lagging Strand Roadblock by the Eukaryotic Replicative DNA Helicase , 2011, Cell.

[34]  J. Berger,et al.  DNA stretching by bacterial initiators promotes replication origin melting , 2011, Nature.

[35]  Alain Arneodo,et al.  Replication-associated mutational asymmetry in the human genome. , 2011, Molecular biology and evolution.

[36]  J. Hamlin,et al.  Cdc45 Limits Replicon Usage from a Low Density of preRCs in Mammalian Cells , 2011, PloS one.

[37]  Françoise Argoul,et al.  Multi-scale coding of genomic information: From DNA sequence to genome structure and function , 2011 .

[38]  David M. Gilbert,et al.  Evaluating genome-scale approaches to eukaryotic DNA replication , 2010, Nature Reviews Genetics.

[39]  M. Méchali,et al.  Eukaryotic DNA replication origins: many choices for appropriate answers , 2010, Nature Reviews Molecular Cell Biology.

[40]  John Bechhoefer,et al.  Modeling genome-wide replication kinetics reveals a mechanism for regulation of replication timing , 2010, Molecular systems biology.

[41]  S. Dalton,et al.  Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. , 2010, Genome research.

[42]  Laurent Farinelli,et al.  Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes. , 2010, Genome research.

[43]  Pedro Olivares-Chauvet,et al.  S Phase Progression in Human Cells Is Dictated by the Genetic Continuity of DNA Foci , 2010, PLoS genetics.

[44]  Alain Arneodo,et al.  Wavelet-based method to disentangle transcription- and replication-associated strand asymmetries in mammalian genomes , 2010 .

[45]  Bernadett Papp,et al.  Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis. , 2010, Genome research.

[46]  M. Botchan,et al.  Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. , 2010, Molecular cell.

[47]  Michael O Dorschner,et al.  Sequencing newly replicated DNA reveals widespread plasticity in human replication timing , 2009, Proceedings of the National Academy of Sciences.

[48]  J. Diffley,et al.  Concerted Loading of Mcm2–7 Double Hexamers around DNA during DNA Replication Origin Licensing , 2009, Cell.

[49]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[50]  Alain Arneodo,et al.  Open chromatin encoded in DNA sequence is the signature of ‘master’ replication origins in human cells , 2009, Nucleic acids research.

[51]  Olivier Hyrien,et al.  Universal Temporal Profile of Replication Origin Activation in Eukaryotes , 2009, PloS one.

[52]  S. Bell,et al.  Termination structures in the Escherichia coli chromosome replication fork trap. , 2009, Journal of molecular biology.

[53]  Takuro Nakagawa,et al.  The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus , 2009, Nature Cell Biology.

[54]  D. Wigley ORC proteins: marking the start. , 2009, Current opinion in structural biology.

[55]  Olivier Hyrien,et al.  Mathematical modelling of eukaryotic DNA replication , 2009, Chromosome Research.

[56]  S. Bell,et al.  The replication fork trap and termination of chromosome replication , 2008, Molecular microbiology.

[57]  David Collingwood,et al.  The Temporal Program of Chromosome Replication: Genomewide Replication in clb5Δ Saccharomyces cerevisiae , 2008, Genetics.

[58]  J. Berger,et al.  Structural Synergy and Molecular Crosstalk between Bacterial Helicase Loaders and Replication Initiators , 2008, Cell.

[59]  E. Rocha The organization of the bacterial genome. , 2008, Annual review of genetics.

[60]  S. Bell,et al.  Chromosome replication dynamics in the archaeon Sulfolobus acidocaldarius , 2008, Proceedings of the National Academy of Sciences.

[61]  J. Julian Blow,et al.  Replication licensing and cancer — a fatal entanglement? , 2008, Nature Reviews Cancer.

[62]  Dirk Schübeler,et al.  Global Reorganization of Replication Domains During Embryonic Stem Cell Differentiation , 2008, PLoS biology.

[63]  Olivier Hyrien,et al.  A Dynamic Stochastic Model for DNA Replication Initiation in Early Embryos , 2008, PloS one.

[64]  S. Bell,et al.  Extra-chromosomal elements and the evolution of cellular DNA replication machineries , 2008, Nature Reviews Molecular Cell Biology.

[65]  Scott Cheng‐Hsin Yang,et al.  How Xenopus laevis embryos replicate reliably: investigating the random-completion problem. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  Eduardo P C Rocha,et al.  From GC skews to wavelets: a gentle guide to the analysis of compositional asymmetries in genomic data. , 2008, Biochimie.

[67]  Zhifeng Shao,et al.  DNA combing reveals intrinsic temporal disorder in the replication of yeast chromosome VI. , 2008, Journal of molecular biology.

[68]  S Nicolay,et al.  DNA replication timing data corroborate in silico human replication origin predictions. , 2007, Physical review letters.

[69]  J. Lobry,et al.  A new method for assessing the effect of replication on DNA base composition asymmetry. , 2007, Molecular biology and evolution.

[70]  Alain Arneodo,et al.  Human gene organization driven by the coordination of replication and transcription. , 2007, Genome research.

[71]  James M. Berger,et al.  DNA replication initiation: mechanisms and regulation in bacteria , 2007, Nature Reviews Microbiology.

[72]  S. Bell,et al.  Extrachromosomal element capture and the evolution of multiple replication origins in archaeal chromosomes , 2007, Proceedings of the National Academy of Sciences.

[73]  J. Lawrence,et al.  Mutational bias suggests that replication termination occurs near the dif site, not at Ter sites , 2007, Molecular microbiology.

[74]  Jonathan A Eisen,et al.  Genetic and Physical Mapping of DNA Replication Origins in Haloferax volcanii , 2007, PLoS genetics.

[75]  J. Walter,et al.  Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. , 2007, Genes & development.

[76]  John Bechhoefer,et al.  How Xenopus laevis replicates DNA reliably even though its origins of replication are located and initiated stochastically. , 2006, Physical review letters.

[77]  M. Touchon,et al.  Similar compositional biases are caused by very different mutational effects. , 2006, Genome research.

[78]  J. Berger,et al.  Structural basis for ATP-dependent DnaA assembly and replication-origin remodeling , 2006, Nature Structural &Molecular Biology.

[79]  S. Bell,et al.  Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2-7 helicase. , 2006, Molecular cell.

[80]  Alain Arneodo,et al.  Replication-associated strand asymmetries in mammalian genomes: toward detection of replication origins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[81]  S Nicolay,et al.  From DNA sequence analysis to modeling replication in the human genome. , 2005, Physical review letters.

[82]  J. Walter,et al.  Eukaryotic origins of DNA replication: could you please be more specific? , 2005, Seminars in cell & developmental biology.

[83]  J. Julian Blow,et al.  Preventing re-replication of chromosomal DNA , 2005, Nature Reviews Molecular Cell Biology.

[84]  M. Waldor,et al.  MicroReview: Divided genomes: negotiating the cell cycle in prokaryotes with multiple chromosomes , 2005, Molecular microbiology.

[85]  A. Markovitz A new in vivo termination function for DNA polymerase I of Escherichia coli K12 , 2005, Molecular microbiology.

[86]  M. Bulmer,et al.  Strand symmetry of mutation rates in theβ-globin region , 1991, Journal of Molecular Evolution.

[87]  David M. MacAlpine,et al.  A genomic view of eukaryotic DNA replication , 2005, Chromosome Research.

[88]  David M MacAlpine,et al.  Coordination of replication and transcription along a Drosophila chromosome. , 2004, Genes & development.

[89]  Nick Gilbert,et al.  Chromatin Architecture of the Human Genome Gene-Rich Domains Are Enriched in Open Chromatin Fibers , 2004, Cell.

[90]  A. Grigoriev,et al.  Identification and autonomous replication capability of a chromosomal replication origin from the archaeon Sulfolobus solfataricus , 2004, Extremophiles.

[91]  Rolf Bernander,et al.  Three replication origins in Sulfolobus species: synchronous initiation of chromosome replication and asynchronous termination. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[92]  Detlef D. Leipe,et al.  Evolutionary history and higher order classification of AAA+ ATPases. , 2004, Journal of structural biology.

[93]  M. Botchan,et al.  DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC–DNA binding , 2004, The EMBO journal.

[94]  Rolf Bernander,et al.  Identification of Two Origins of Replication in the Single Chromosome of the Archaeon Sulfolobus solfataricus , 2004, Cell.

[95]  Alain Arneodo,et al.  Transcription-coupled and splicing-coupled strand asymmetries in eukaryotic genomes. , 2004, Nucleic acids research.

[96]  J. Berger,et al.  Biochemical characterization of Cdc6/Orc1 binding to the replication origin of the euryarchaeon Methanothermobacter thermoautotrophicus. , 2004, Nucleic acids research.

[97]  S Nicolay,et al.  Transcription‐coupled TA and GC strand asymmetries in the human genome , 2003, FEBS letters.

[98]  Shiladitya DasSarma,et al.  An Archaeal Chromosomal Autonomously Replicating Sequence Element from an Extreme Halophile, Halobacterium sp. Strain NRC-1 , 2003, Journal of bacteriology.

[99]  J. Newport,et al.  CpG Methylation of DNA Restricts Prereplication Complex Assembly in Xenopus Egg Extracts , 2003, Molecular and Cellular Biology.

[100]  Matthew K. Waldor,et al.  Distinct Replication Requirements for the Two Vibrio cholerae Chromosomes , 2003, Cell.

[101]  Olivier Hyrien,et al.  Paradoxes of eukaryotic DNA replication: MCM proteins and the random completion problem , 2003, BioEssays : news and reviews in molecular, cellular and developmental biology.

[102]  Alon Goren,et al.  Replicating by the clock , 2003, Nature Reviews Molecular Cell Biology.

[103]  Heinrich Leonhardt,et al.  DNA polymerase clamp shows little turnover at established replication sites but sequential de novo assembly at adjacent origin clusters. , 2002, Molecular cell.

[104]  T. Prokhorova,et al.  MCM2–7 Complexes Bind Chromatin in a Distributed Pattern Surrounding the Origin Recognition Complex inXenopus Egg Extracts* , 2002, The Journal of Biological Chemistry.

[105]  R. Bernander,et al.  Chromosome replication patterns in the hyperthermophilic euryarchaea Archaeoglobus fulgidus and Methanocaldococcus (Methanococcus) jannaschii , 2002 .

[106]  R. Bernander,et al.  Chromosome replication patterns in the hyperthermophilic euryarchaea Archaeoglobus fulgidus and Methanocaldococcus (Methanococcus) jannaschii , 2002, Molecular microbiology.

[107]  John Herrick,et al.  Kinetic model of DNA replication in eukaryotic organisms. , 2001, Journal of molecular biology.

[108]  J. Huberman,et al.  Regulation of replication timing in fission yeast , 2001, The EMBO journal.

[109]  Ronald W. Davis,et al.  Replication dynamics of the yeast genome. , 2001, Science.

[110]  Mark A. Ragan,et al.  The complete genome of the crenarchaeon Sulfolobus solfataricus P2 , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[111]  I. Kurtser,et al.  Effects of replication termination mutants on chromosome partitioning in Bacillus subtilis. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[112]  A Bensimon,et al.  Replication fork density increases during DNA synthesis in X. laevis egg extracts. , 2000, Journal of molecular biology.

[113]  H Philippe,et al.  Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. , 2000, Science.

[114]  O. Hyrien,et al.  Mechanisms ensuring rapid and complete DNA replication despite random initiation in Xenopus early embryos. , 2000, Journal of molecular biology.

[115]  P. Forterre Displacement of cellular proteins by functional analogues from plasmids or viruses could explain puzzling phylogenies of many DNA informational proteins , 1999, Molecular microbiology.

[116]  J. Blow,et al.  Changes in association of the Xenopus origin recognition complex with chromatin on licensing of replication origins. , 1999, Journal of cell science.

[117]  H Philippe,et al.  Identification of putative chromosomal origins of replication in Archaea , 1999, Molecular microbiology.

[118]  R. Chuang,et al.  The fission yeast homologue of Orc4p binds to replication origin DNA via multiple AT-hooks. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[119]  Ronald Berezney,et al.  Spatial and Temporal Dynamics of DNA Replication Sites in Mammalian Cells , 1998, The Journal of cell biology.

[120]  A Grigoriev,et al.  Analyzing genomes with cumulative skew diagrams. , 1998, Nucleic acids research.

[121]  Ana Pombo,et al.  Replicon Clusters Are Stable Units of Chromosome Structure: Evidence That Nuclear Organization Contributes to the Efficient Activation and Propagation of S Phase in Human Cells , 1998, The Journal of cell biology.

[122]  J. Newport,et al.  Identification of a Preinitiation Step in DNA Replication That Is Independent of Origin Recognition Complex and cdc6, but Dependent on cdk2 , 1998, The Journal of cell biology.

[123]  W. L. Fangman,et al.  Replication profile of Saccharomyces cerevisiae chromosome VI , 1997, Genes to cells : devoted to molecular & cellular mechanisms.

[124]  G. Evan,et al.  Interaction between the Origin Recognition Complex and the Replication Licensing Systemin Xenopus , 1996, Cell.

[125]  J. Lobry Asymmetric substitution patterns in the two DNA strands of bacteria. , 1996, Molecular biology and evolution.

[126]  I. Todorov,et al.  Large, complex modular structure of a fission yeast DNA replication origin , 1996, Current Biology.

[127]  T. Kelly,et al.  Genetic analysis of an ARS element from the fission yeast Schizosaccharomyces pombe. , 1995, The EMBO journal.

[128]  M. Méchali,et al.  Transition in Specification of Embryonic Metazoan DNA Replication Origins , 1995, Science.

[129]  S. Bell,et al.  Yeast origin recognition complex functions in transcription silencing and DNA replication. , 1993, Science.

[130]  J. Rine,et al.  Origin recognition complex (ORC) in transcriptional silencing and DNA replication in S. cerevisiae. , 1993, Science.

[131]  M. Méchali,et al.  Chromosomal replication initiates and terminates at random sequences but at regular intervals in the ribosomal DNA of Xenopus early embryos. , 1993, The EMBO journal.

[132]  K. Nasmyth,et al.  Yeast origin recognition complex is involved in DNA replication and transcriptional silencing , 1993, Nature.

[133]  C. Newlon,et al.  The structure and function of yeast ARS elements. , 1993, Current opinion in genetics & development.

[134]  Bruce Stillman,et al.  ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex , 1992, Nature.

[135]  J. Blow,et al.  DNA replication initiates at multiple sites on plasmid DNA in Xenopus egg extracts. , 1992, Nucleic acids research.

[136]  M. Méchali,et al.  Plasmid replication in Xenopus eggs and egg extracts: a 2D gel electrophoretic analysis. , 1992, Nucleic acids research.

[137]  T. Shinomiya,et al.  Analysis of chromosomal replicons in early embryos of Drosophila melanogaster by two-dimensional gel electrophoresis. , 1991, Nucleic acids research.

[138]  W. L. Fangman,et al.  Mapping replication origins in yeast chromosomes , 1991, BioEssays : news and reviews in molecular, cellular and developmental biology.

[139]  P. Krysan,et al.  Replication initiates at multiple locations on an autonomously replicating plasmid in human cells , 1991, Molecular and cellular biology.

[140]  P. Kuempel,et al.  The tus gene of Escherichia coli: autoregulation, analysis of flanking sequences and identification of a complementary system in Salmonella typhimurium. , 1991, Research in microbiology.

[141]  P. Dijkwel,et al.  Replication initiates in a broad zone in the amplified CHO dihydrofolate reductase domain , 1990, Cell.

[142]  S. Haase,et al.  Isolation of human sequences that replicate autonomously in human cells , 1989, Molecular and cellular biology.

[143]  S. Shall,et al.  Sequence analysis of ARS elements in fission yeast. , 1988, The EMBO journal.

[144]  J. Huberman,et al.  The in vivo replication origin of the yeast 2μm plasmid , 1987, Cell.

[145]  W. L. Fangman,et al.  The localization of replication origins on ARS plasmids in S. cerevisiae , 1987, Cell.

[146]  T. Iismaa,et al.  The normal replication terminus of the Bacillus subtilis chromosome, terC, is dispensable for vegetative growth and sporulation. , 1987, Journal of molecular biology.

[147]  H Nakamura,et al.  Structural organizations of replicon domains during DNA synthetic phase in the mammalian nucleus. , 1986, Experimental cell research.

[148]  R. Harland,et al.  Regulated replication of DNA microinjected into eggs of Xenopus laevis , 1980, Cell.

[149]  R. W. Davis,et al.  High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[150]  J. Louarn,et al.  Evidence for a fixed termination site of chromosome replication in Escherichia coli K12. , 1977, Journal of molecular biology.

[151]  P. Kuempel,et al.  Terminus region of the chromosome in Escherichia coli inhibits replication forks. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[152]  H. G. Callan Review Lecture - Replication of DNA in the chromosomes of eukaryotes , 1972, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[153]  A. Riggs,et al.  On the mechanism of DNA replication in mammalian chromosomes. , 1968, Journal of molecular biology.

[154]  François Jacob,et al.  On the Regulation of DNA Replication in Bacteria , 1963 .