Cytoarchitectonic subdivisions of the dorsolateral frontal cortex of the marmoset monkey (Callithrix jacchus), and their projections to dorsal visual areas

We describe the organization of the dorsolateral frontal areas in marmoset monkeys using a combination of architectural methods (Nissl, cytochrome oxidase, and myelin stains) and injections of fluorescent tracers in extrastriate areas (the second visual area [V2], the dorsomedial and dorsoanterior areas [DM, DA], the middle temporal area and middle temporal crescent [MT, MTc], and the posterior parietal cortex [area 7]). Cytoarchitectural field 8 comprises three subdivisions: 8Av, 8Ad, and 8B. The ventrolateral subdivision, 8Av, forms the principal source of frontal projections to the “dorsal stream,” having connections with each of the injected visual areas. The cytoarchitectural characteristics of 8Av suggest that this subdivision corresponds to the marmoset's frontal eye field. The intermediate subdivision of area 8 (8Ad) has efferent projections to area 7, while the dorsomedial subdivision (8B) has few or no connections with extrastriate cortex. Area 46, located rostrolateral to area 8Av, has substantial connections with the medial extrastriate areas (DM, DA, and area 7) and with MT, while the cortex lateral to 8Av (area 12/45) projects primarily to MT and to the MTc. The rostromedial prefrontal (area 9) and frontopolar (area 10) regions have very few extrastriate projections. Finally, cells in dorsal area 6 (6d) have sparse projections to DM, MT, and the MTc, as well as strong projections to DA and to area 7. These results illuminate aspects of the evolutionary development of the primate frontal cortex, and serve as a basis for further research into cognitive functions using a marmoset model. J. Comp. Neurol. 495:149–172, 2006. © 2006 Wiley‐Liss, Inc.

[1]  Computer tomography in transient global amnesia. , 1982, European neurology.

[2]  M G Rosa,et al.  Visuotopic organisation of striate cortex in the marmoset monkey (Callithrix jacchus) , 1996, The Journal of comparative neurology.

[3]  T. Robbins,et al.  Dissociation in prefrontal cortex of affective and attentional shifts , 1996, Nature.

[4]  W. Graf,et al.  Oculomotor Areas of the Primate Frontal Lobes: A Transneuronal Transfer of Rabies Virus and [14C]-2-Deoxyglucose Functional Imaging Study , 2004, The Journal of Neuroscience.

[5]  S. Squatrito,et al.  Corticocortical connections between frontal periarcuate regions and visual areas of the superior temporal sulcus and the adjoining inferior parietal lobule in the macaque monkey , 1998, Brain Research.

[6]  S P Wise,et al.  Size, laminar and columnar distribution of efferent cells in the sensory‐motor cortex of monkeys , 1977, The Journal of comparative neurology.

[7]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections , 1989, The Journal of comparative neurology.

[8]  S Rozzi,et al.  Projections from the superior temporal sulcus to the agranular frontal cortex in the macaque , 2001, The European journal of neuroscience.

[9]  R. Passingham,et al.  The prefrontal cortex: response selection or maintenance within working memory? , 2000, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[10]  B. Everitt,et al.  Lesions of the Orbitofrontal but not Medial Prefrontal Cortex Disrupt Conditioned Reinforcement in Primates , 2003, The Journal of Neuroscience.

[11]  J. Kaas,et al.  Movement representation in the dorsal and ventral premotor areas of owl monkeys: A microstimulation study , 1996, The Journal of comparative neurology.

[12]  S. Zeki,et al.  A visuo‐somatomotor pathway through superior parietal cortex in the macaque monkey: cortical connections of areas V6 and V6A , 1998, The European journal of neuroscience.

[13]  D Carden,et al.  Eye movements induced by electrical stimulation of the frontal eye fields of marmosets and squirrel monkeys. , 1982, Brain, behavior and evolution.

[14]  M G Rosa,et al.  The dorsomedial visual areas in New World and Old World monkeys: homology and function , 2001, The European journal of neuroscience.

[15]  Henry Kennedy,et al.  Quantitative Analysis of Connectivity in the Visual Cortex: Extracting Function from Structure , 2004, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[16]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  C. Bruce,et al.  Topography of projections to posterior cortical areas from the macaque frontal eye fields , 1995, The Journal of comparative neurology.

[18]  Leslie G. Ungerleider,et al.  Cortical connections of visual area MT in the macaque , 1986, The Journal of comparative neurology.

[19]  G. B. Stanton,et al.  Cytoarchitectural characteristic of the frontal eye fields in macaque monkeys , 1989, The Journal of comparative neurology.

[20]  M G Rosa,et al.  Visual areas in the dorsal and medial extrastriate cortices of the marmoset , 1995, The Journal of comparative neurology.

[21]  Leslie G. Ungerleider,et al.  A neural system for human visual working memory. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Leslie G. Ungerleider,et al.  Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. , 1994, Cerebral cortex.

[23]  J. Fuster Frontal lobe and cognitive development , 2002, Journal of neurocytology.

[24]  D. Pandya,et al.  Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey , 1987, The Journal of comparative neurology.

[25]  G. Elston,et al.  The second visual area in the marmoset monkey: Visuotopic organisation, magnification factors, architectonical boundaries, and modularity , 1997, The Journal of comparative neurology.

[26]  J. Trojanowski,et al.  Prefrontal granular cortex of the rhesus monkey. II. Interhemispheric cortical afferents , 1977, Brain Research.

[27]  P. Goldman-Rakic,et al.  Ipsilateral cortical connections of granular frontal cortex in the strepsirhine primate Galago, with comparative comments on anthropoid primates , 1991, The Journal of comparative neurology.

[28]  D. Amaral,et al.  Macaque monkey retrosplenial cortex: III. Cortical efferents , 2003, The Journal of comparative neurology.

[29]  D. Pandya,et al.  Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns , 1999, The European journal of neuroscience.

[30]  P. Goldman-Rakic,et al.  Myelo‐ and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca , 1991, The Journal of comparative neurology.

[31]  D. Pandya,et al.  Efferent cortico-cortical projections of the prefrontal cortex in the rhesus monkey. , 1971, Brain research.

[32]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[33]  John Q. Trojanowski,et al.  Prefrontal granular cortex of the rhesus monkey. I. Intrahemispheric cortical afferents , 1977, Brain Research.

[34]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[35]  Kae Nakamura,et al.  Updating of the visual representation in monkey striate and extrastriate cortex during saccades , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[36]  C. Galletti,et al.  Evidence for both reaching and grasping activity in the medial parieto‐occipital cortex of the macaque , 2004, The European journal of neuroscience.

[37]  P. Goldman-Rakic,et al.  Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. , 1989, Journal of neurophysiology.

[38]  H. Kennedy,et al.  Laminar Distribution of Neurons in Extrastriate Areas Projecting to Visual Areas V1 and V4 Correlates with the Hierarchical Rank and Indicates the Operation of a Distance Rule , 2000, The Journal of Neuroscience.

[39]  L A Krubitzer,et al.  Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns , 1990, Visual Neuroscience.

[40]  C. Gross,et al.  Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: A dual tracer study , 1988, The Journal of comparative neurology.

[41]  T. Powell,et al.  An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. , 1970, Brain : a journal of neurology.

[42]  P. Goldman-Rakic The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. , 1996, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[43]  J. Kaas,et al.  Subdivisions and connections of auditory cortex in owl monkeys , 1992, The Journal of comparative neurology.

[44]  H. Niki Differential activity of prefrontal units during right and left delayed response trials. , 1974, Brain research.

[45]  G. Elston,et al.  Visuotopic organisation and neuronal response selectivity for direction of motion in visual areas of the caudal temporal lobe of the marmoset monkey (Callithrix jacchus): Middle temporal area, middle temporal crescent, and surrounding cortex , 1998, The Journal of comparative neurology.

[46]  J. Bullier,et al.  Functional streams in occipito-frontal connections in the monkey , 1996, Behavioural Brain Research.

[47]  C. Galletti,et al.  Role of the medial parieto-occipital cortex in the control of reaching and grasping movements , 2003, Experimental Brain Research.

[48]  Maurizio Corbetta,et al.  Distribution of activity across the monkey cerebral cortical surface, thalamus and midbrain during rapid, visually guided saccades. , 2006, Cerebral cortex.

[49]  E. Irle,et al.  Cortical and subcortical afferent connections of the squirrel monkey's (lateral) premotor cortex: evidence for visual cortical afferents. , 1987, The International journal of neuroscience.

[50]  L A Krubitzer,et al.  Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys II. cortical connections , 1986, The Journal of comparative neurology.

[51]  T. Brandt,et al.  Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. , 1998, Brain : a journal of neurology.

[52]  C Galletti,et al.  Superior area 6 afferents from the superior parietal lobule in the macaque monkey , 1998, The Journal of comparative neurology.

[53]  David J. Freedman,et al.  The prefrontal cortex: categories, concepts and cognition. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[54]  G. Bonin,et al.  The neocortex of hapale , 1947, The Journal of comparative neurology.

[55]  T. Robbins,et al.  Cognitive Inflexibility After Prefrontal Serotonin Depletion , 2004, Science.

[56]  E. Rolls The functions of the orbitofrontal cortex , 1999, Brain and Cognition.

[57]  L A Krubitzer,et al.  Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys II. cortical connections , 1986, The Journal of comparative neurology.

[58]  Marcello G P Rosa,et al.  Brain maps, great and small: lessons from comparative studies of primate visual cortical organization , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[59]  J. Lynch,et al.  Corticocortical input to the smooth and saccadic eye movement subregions of the frontal eye field in Cebus monkeys. , 1996, Journal of neurophysiology.

[60]  J. Kaas,et al.  Prefrontal connections of the parabelt auditory cortex in macaque monkeys , 1999, Brain Research.

[61]  M. Gamberini,et al.  Resolving the organization of the New World monkey third visual complex: The dorsal extrastriate cortex of the marmoset (Callithrix jacchus) , 2005, The Journal of comparative neurology.

[62]  H. Barbas Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey , 1988, The Journal of comparative neurology.

[63]  M. Mesulam,et al.  Cortical afferent input to the principals region of the rhesus monkey , 1985, Neuroscience.

[64]  R Gattass,et al.  Cortical streams of visual information processing in primates. , 1990, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[65]  A. Roberts,et al.  Inhibitory control and affective processing in the prefrontal cortex: neuropsychological studies in the common marmoset. , 2000, Cerebral cortex.

[66]  D. Pandya,et al.  Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey , 2002, The European journal of neuroscience.

[67]  J. Kaas,et al.  The relationship of corpus callosum connections to electrical stimulation maps of motor, supplementary motor, and the frontal eye fields in owl monkeys , 1986, The Journal of comparative neurology.

[68]  M. Rosa Topographic organisation of extrastriate areas in the flying fox: Implications for the evolution of mammalian visual cortex , 1999, The Journal of comparative neurology.

[69]  D. V. van Essen,et al.  Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey , 2000, The Journal of comparative neurology.

[70]  M. Rosa,et al.  Visual areas in lateral and ventral extrastriate cortices of the marmoset monkey , 2000, The Journal of comparative neurology.

[71]  L A Krubitzer,et al.  The dorsomedial visual area of owl monkeys: Connections, myeloarchitecture, and homologies in other primates , 1993, The Journal of comparative neurology.

[72]  R Gattass,et al.  Cortical afferents of visual area MT in the Cebus monkey: Possible homologies between New and old World monkeys , 1993, Visual Neuroscience.

[73]  H. Barbas,et al.  Organization of afferent input to subdivisions of area 8 in the rhesus monkey , 1981, The Journal of comparative neurology.

[74]  James B. Rowe,et al.  Working Memory for Location and Time: Activity in Prefrontal Area 46 Relates to Selection Rather than Maintenance in Memory , 2001, NeuroImage.

[75]  A. B. Mayer,et al.  Early coding of reaching: frontal and parietal association connections of parieto‐occipital cortex , 1999, The European journal of neuroscience.

[76]  T. P. S. Powell,et al.  The ipsilateral corticocortical connections of area 7 with the frontal lobe in the monkey , 1990, Brain Research.

[77]  D. Boussaoud,et al.  Direct visual pathways for reaching movements in the macaque monkey , 1995, Neuroreport.

[78]  Leo L. Lui,et al.  Functional response properties of neurons in the dorsomedial visual area of New World monkeys (Callithrix jacchus). , 2006, Cerebral cortex.

[79]  J C Gore,et al.  Differential anterior prefrontal activation during the recognition stage of a spatial working memory task. , 2005, Cerebral cortex.

[80]  K. Zilles,et al.  Parcellation of the frontal cortex of the New World monkey Callithrix jacchus by eight neurotransmitter-binding sites , 1995, Anatomy and Embryology.

[81]  D. Amaral,et al.  Macaque monkey retrosplenial cortex: II. Cortical afferents , 2003, The Journal of comparative neurology.

[82]  A. Walker,et al.  A cytoarchitectural study of the prefrontal area of the macaque monkey , 1940 .

[83]  M. Mishkin,et al.  Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex , 1999, Nature Neuroscience.

[84]  E. G. Jones,et al.  Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys , 1978, The Journal of comparative neurology.

[85]  P. Goldman-Rakic,et al.  Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic "scotomas" , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[86]  G. Rizzolatti,et al.  Two different streams form the dorsal visual system: anatomy and functions , 2003, Experimental Brain Research.

[87]  J. Bullier,et al.  Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[88]  T. Sawaguchi,et al.  Properties of delay-period neuronal activity in the monkey dorsolateral prefrontal cortex during a spatial delayed matching-to-sample task. , 1999, Journal of neurophysiology.

[89]  D. Pandya,et al.  Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey , 1989, The Journal of comparative neurology.