Classification of Nahm pole solutions of the Kapustin-Witten equations on $S^1\times \Sigma\times \mathbb{R}^+$

In this note, we classify all solutions to the $\mathrm{SU(n)}$ Kapustin-Witten equations on $S^1\times\Sigma \times \mathbb{R}^+$, where $\Sigma$ is a compact Riemann surface, with Nahm pole singularity at $S^1\times\Sigma \times \{0\}$. We provide a similar classification of solutions with generalized Nahm pole singularities along a simple divisor (a "knot") in $S^1\times\Sigma \times \{0\}$.

[1]  Siqi He The Expansions of the Nahm Pole Solutions to the Kapustin-Witten Equations , 2018, 1808.03886.

[2]  R. Mazzeo,et al.  The extended Bogomolny equations with generalized Nahm pole boundary conditions, II , 2018, Duke Mathematical Journal.

[3]  C. Taubes Sequences of Nahm pole solutions to the SU(2) Kapustin-Witten equations , 2018, 1805.02773.

[4]  N. Leung,et al.  Energy Bound for Kapustin–Witten Solutions on S3 × ℝ+ , 2018, International Mathematics Research Notices.

[5]  E. Witten,et al.  The KW equations and the Nahm pole boundary condition with knots , 2017, Communications in Analysis and Geometry.

[6]  R. Mazzeo,et al.  The extended Bogomolny equations and generalized Nahm pole boundary condition , 2017, Geometry & Topology.

[7]  Siqi He A gluing theorem for the Kapustin–Witten equations with a Nahm pole , 2017, Journal of Topology.

[8]  E. Witten Two Lectures On The Jones Polynomial And Khovanov Homology , 2014, 1401.6996.

[9]  C. Taubes Compactness theorems for SL(2;C) generalizations of the 4-dimensional anti-self dual equations, Part I , 2013, 1307.6451.

[10]  V. Mikhaylov On the solutions of generalized Bogomolny equations , 2012, 1202.4848.

[11]  E. Witten,et al.  Knot Invariants from Four-Dimensional Gauge Theory , 2011, 1106.4789.

[12]  E. Witten Fivebranes and Knots , 2011, 1101.3216.

[13]  E. Witten,et al.  Electric-Magnetic Duality And The Geometric Langlands Program , 2006, hep-th/0604151.

[14]  N. Hitchin LIE-GROUPS AND TEICHMULLER SPACE , 1992 .

[15]  N. Hitchin THE SELF-DUALITY EQUATIONS ON A RIEMANN SURFACE , 1987 .

[16]  Kevin Corlette,et al.  Flat $G$-bundles with canonical metrics , 1988 .

[17]  N. Hitchin Stable bundles and integrable systems , 1987 .

[18]  Karen K. Uhlenbeck,et al.  On the existence of hermitian‐yang‐mills connections in stable vector bundles , 1986 .

[19]  S. Donaldson Anti Self‐Dual Yang‐Mills Connections Over Complex Algebraic Surfaces and Stable Vector Bundles , 1985 .

[20]  C. Taubes Self-dual Yang-Mills connections on non-self-dual 4-manifolds , 1982 .