Parallel spinors on globally hyperbolic Lorentzian four-manifolds
暂无分享,去创建一个
[1] T. Leistner,et al. LOCALLY HOMOGENEOUS PP-WAVES , 2014, 1410.3572.
[2] H. Rosenberg,et al. A classification of the topological types ofR2-actions on closed orientable 3-manifolds , 1974 .
[3] Eckhard Meinrenken,et al. LIE GROUPS AND LIE ALGEBRAS , 2021, Lie Groups, Lie Algebras, and Cohomology. (MN-34), Volume 34.
[4] T. Leistner,et al. Hyperbolic Evolution Equations, Lorentzian Holonomy, and Riemannian Generalised Killing Spinors , 2017, 1702.01951.
[5] Polyvector Super-Poincaré Algebras , 2003, hep-th/0311107.
[6] A. L. Onishchik,et al. Lie Groups and Lie Algebras III , 1993 .
[7] Y. Choquet-bruhat. General Relativity and the Einstein Equations , 2009 .
[8] G. Hector. Feuilletages En Cylindres , 1977 .
[9] Daniel Schliebner. Contributions to the geometry of Lorentzian manifolds with special holonomy , 2015 .
[10] R. Geroch,et al. Global aspects of the Cauchy problem in general relativity , 1969 .
[11] Y. Bazaikin. Globally hyperbolic Lorentzian spaces with special holonomy groups , 2009 .
[12] Daniel Schliebner. On Lorentzian manifolds with highest first Betti number , 2013, 1311.6723.
[13] Jesse Freeman,et al. in Morse theory, , 1999 .
[14] J. Milnor. Curvatures of left invariant metrics on lie groups , 1976 .
[15] J. L. Flores,et al. On General Plane Fronted Waves. Geodesics , 2002 .
[16] T. Leistner,et al. Lorentzian Geometry: Holonomy, Spinors, and Cauchy Problems , 2018 .
[17] J. Flores,et al. On the Splitting Problem for Lorentzian Manifolds with an $${\mathbb {R}}$$R-Action with Causal Orbits , 2016, 1605.02345.
[18] K. Tod. All metrics admitting super-covariantly constant spinors , 1983 .
[19] T. Leistner,et al. Completeness of compact Lorentzian manifolds with abelian holonomy , 2013, 1306.0120.
[20] Andrei Moroianu,et al. Generalized Killing spinors and Lagrangian graphs , 2014, 1405.0838.
[21] Marco Freibert. COCALIBRATED G2-STRUCTURES ON PRODUCTS OF FOUR- AND THREE-DIMENSIONAL LIE GROUPS , 2012, 1203.6858.
[22] J. Figueroa-O’Farrill,et al. Spin geometry , 2019, Graduate Studies in Mathematics.
[23] H. Rosenberg. Foliations by planes , 1968 .
[24] H. Tanabe. Hyperbolic Evolution Equations , 2017 .
[25] H. W. Brinkmann. Einstein spaces which are mapped conformally on each other , 1925 .
[26] Y. Fourès-Bruhat,et al. Théorème d'existence pour certains systèmes d'équations aux dérivées partielles non linéaires , 1952 .
[27] Y. Bazaikin. Globally Hyperbolic Lorentzian Manifolds with Special Holonomy Groups , 2009, 0909.3630.
[28] Bernd Ammann,et al. Construction of Initial Data Sets for Lorentzian Manifolds with Lightlike Parallel Spinors , 2019, Communications in Mathematical Physics.
[29] T. Leistner,et al. Cauchy problems for Lorentzian manifolds with special holonomy , 2014, 1411.3059.
[30] Antonio N. Bernal,et al. Communications in Mathematical Physics Smoothness of Time Functions and the Metric Splitting of Globally Hyperbolic Spacetimes , 2005 .
[31] P. Gauduchon,et al. Generalized cylinders in semi-Riemannian and spin geometry , 2003, math/0303095.
[32] O. Müller,et al. Codazzi spinors and globally hyperbolic manifolds with special holonomy , 2007, 0704.3725.
[33] I. Holopainen. Riemannian Geometry , 1927, Nature.
[34] W. Thurston,et al. Three-Dimensional Geometry and Topology, Volume 1: Volume 1 , 1997 .
[35] P. Tondeur. Geometry of Foliations , 1997 .
[36] A. Bernal,et al. On Smooth Cauchy Hypersurfaces and Geroch’s Splitting Theorem , 2003, gr-qc/0306108.
[37] Y. Wong,et al. Differentiable Manifolds , 2009 .
[38] T. Leistner,et al. On the full holonomy group of Lorentzian manifolds , 2012, 1204.5657.
[39] M. Herman. The Godbillon-Vey invariant of foliations by planes of T3 , 1977 .
[40] C. Lazaroiu,et al. Complex Lipschitz structures and bundles of complex Clifford modules , 2017, Differential Geometry and its Applications.
[41] R. Bryant. Pseudo-Reimannian metrics with parallel spinor fields and vanishing Ricci tensor , 2000, math/0004073.
[42] R. Roussarie,et al. A Classification of Closed Orientable 3-Manifolds of Rank Two , 1970 .
[43] S. Chern,et al. Differential Geometry: Cartan's Generalization of Klein's Erlangen Program , 2000 .
[44] Three-Dimensional Homogeneous Spaces and their Application in General Relativity , 2012 .
[45] R. Schimming. RIEMANNsche Räume mit ebenfrontiger und mit ebener Symmetrie , 1974 .
[46] Classification of N-(Super)-Extended Poincaré Algebras and Bilinear Invariants of the Spinor Representation of Spin (p,q) , 1995, math/9511215.
[47] Andree Lischewski. The Cauchy problem for parallel spinors as first-order symmetric hyperbolic system , 2015, 1503.04946.
[48] L. Conlon,et al. Transversally parallelizable foliations of codimension two , 1974 .
[49] C. Lazaroiu,et al. Real spinor bundles and real Lipschitz structures , 2016, Asian Journal of Mathematics.