Parallel spinors on globally hyperbolic Lorentzian four-manifolds

We investigate the differential geometry and topology of globally hyperbolic four-manifolds $(M,g)$ admitting a parallel real spinor $\varepsilon$. Using the theory of parabolic pairs recently introduced in arXiv:1911.08658 , we first formulate the parallelicity condition of $\varepsilon$ on $M$ as a system of partial differential equations, the parallel spinor flow equations, for a family of polyforms on any given Cauchy surface $\Sigma \hookrightarrow M$. Existence of a parallel spinor on $(M,g)$ induces a system of constraint partial differential equations on $\Sigma$, which we prove to be equivalent to an exterior differential system involving a cohomological condition on the shape operator of the embedding $\Sigma\hookrightarrow M$. Solutions of this differential system are precisely the allowed initial data for the evolution problem of a parallel spinor and define the notion of parallel Cauchy pair $(\mathfrak{e},\Theta)$, where $\mathfrak{e}$ is a coframe and $\Theta$ is a symmetric two-tensor. We characterize all parallel Cauchy pairs on simply connected Cauchy surfaces, refining a result of Baum, Leistner and Lischewski. Furthermore, we classify all compact three-manifolds admitting parallel Cauchy pairs, proving that they are canonically equipped with a locally free action of $\mathbb{R}^2$ and are isomorphic to certain torus bundles over $S^1$, whose Riemannian structure we characterize in detail. Moreover, we classify all left-invariant parallel Cauchy pairs on simply connected Lie groups, specifying when they are allowed initial data for the Ricci flat equations and when the shape operator is Codazzi. Finally, we give a novel geometric interpretation of a class of parallel spinor flows and solve it in several examples, obtaining explicit families of four-dimensional Lorentzian manifolds carrying parallel spinors.

[1]  T. Leistner,et al.  LOCALLY HOMOGENEOUS PP-WAVES , 2014, 1410.3572.

[2]  H. Rosenberg,et al.  A classification of the topological types ofR2-actions on closed orientable 3-manifolds , 1974 .

[3]  Eckhard Meinrenken,et al.  LIE GROUPS AND LIE ALGEBRAS , 2021, Lie Groups, Lie Algebras, and Cohomology. (MN-34), Volume 34.

[4]  T. Leistner,et al.  Hyperbolic Evolution Equations, Lorentzian Holonomy, and Riemannian Generalised Killing Spinors , 2017, 1702.01951.

[5]  Polyvector Super-Poincaré Algebras , 2003, hep-th/0311107.

[6]  A. L. Onishchik,et al.  Lie Groups and Lie Algebras III , 1993 .

[7]  Y. Choquet-bruhat General Relativity and the Einstein Equations , 2009 .

[8]  G. Hector Feuilletages En Cylindres , 1977 .

[9]  Daniel Schliebner Contributions to the geometry of Lorentzian manifolds with special holonomy , 2015 .

[10]  R. Geroch,et al.  Global aspects of the Cauchy problem in general relativity , 1969 .

[11]  Y. Bazaikin Globally hyperbolic Lorentzian spaces with special holonomy groups , 2009 .

[12]  Daniel Schliebner On Lorentzian manifolds with highest first Betti number , 2013, 1311.6723.

[13]  Jesse Freeman,et al.  in Morse theory, , 1999 .

[14]  J. Milnor Curvatures of left invariant metrics on lie groups , 1976 .

[15]  J. L. Flores,et al.  On General Plane Fronted Waves. Geodesics , 2002 .

[16]  T. Leistner,et al.  Lorentzian Geometry: Holonomy, Spinors, and Cauchy Problems , 2018 .

[17]  J. Flores,et al.  On the Splitting Problem for Lorentzian Manifolds with an $${\mathbb {R}}$$R-Action with Causal Orbits , 2016, 1605.02345.

[18]  K. Tod All metrics admitting super-covariantly constant spinors , 1983 .

[19]  T. Leistner,et al.  Completeness of compact Lorentzian manifolds with abelian holonomy , 2013, 1306.0120.

[20]  Andrei Moroianu,et al.  Generalized Killing spinors and Lagrangian graphs , 2014, 1405.0838.

[21]  Marco Freibert COCALIBRATED G2-STRUCTURES ON PRODUCTS OF FOUR- AND THREE-DIMENSIONAL LIE GROUPS , 2012, 1203.6858.

[22]  J. Figueroa-O’Farrill,et al.  Spin geometry , 2019, Graduate Studies in Mathematics.

[23]  H. Rosenberg Foliations by planes , 1968 .

[24]  H. Tanabe Hyperbolic Evolution Equations , 2017 .

[25]  H. W. Brinkmann Einstein spaces which are mapped conformally on each other , 1925 .

[26]  Y. Fourès-Bruhat,et al.  Théorème d'existence pour certains systèmes d'équations aux dérivées partielles non linéaires , 1952 .

[27]  Y. Bazaikin Globally Hyperbolic Lorentzian Manifolds with Special Holonomy Groups , 2009, 0909.3630.

[28]  Bernd Ammann,et al.  Construction of Initial Data Sets for Lorentzian Manifolds with Lightlike Parallel Spinors , 2019, Communications in Mathematical Physics.

[29]  T. Leistner,et al.  Cauchy problems for Lorentzian manifolds with special holonomy , 2014, 1411.3059.

[30]  Antonio N. Bernal,et al.  Communications in Mathematical Physics Smoothness of Time Functions and the Metric Splitting of Globally Hyperbolic Spacetimes , 2005 .

[31]  P. Gauduchon,et al.  Generalized cylinders in semi-Riemannian and spin geometry , 2003, math/0303095.

[32]  O. Müller,et al.  Codazzi spinors and globally hyperbolic manifolds with special holonomy , 2007, 0704.3725.

[33]  I. Holopainen Riemannian Geometry , 1927, Nature.

[34]  W. Thurston,et al.  Three-Dimensional Geometry and Topology, Volume 1: Volume 1 , 1997 .

[35]  P. Tondeur Geometry of Foliations , 1997 .

[36]  A. Bernal,et al.  On Smooth Cauchy Hypersurfaces and Geroch’s Splitting Theorem , 2003, gr-qc/0306108.

[37]  Y. Wong,et al.  Differentiable Manifolds , 2009 .

[38]  T. Leistner,et al.  On the full holonomy group of Lorentzian manifolds , 2012, 1204.5657.

[39]  M. Herman The Godbillon-Vey invariant of foliations by planes of T3 , 1977 .

[40]  C. Lazaroiu,et al.  Complex Lipschitz structures and bundles of complex Clifford modules , 2017, Differential Geometry and its Applications.

[41]  R. Bryant Pseudo-Reimannian metrics with parallel spinor fields and vanishing Ricci tensor , 2000, math/0004073.

[42]  R. Roussarie,et al.  A Classification of Closed Orientable 3-Manifolds of Rank Two , 1970 .

[43]  S. Chern,et al.  Differential Geometry: Cartan's Generalization of Klein's Erlangen Program , 2000 .

[44]  Three-Dimensional Homogeneous Spaces and their Application in General Relativity , 2012 .

[45]  R. Schimming RIEMANNsche Räume mit ebenfrontiger und mit ebener Symmetrie , 1974 .

[46]  Classification of N-(Super)-Extended Poincaré Algebras and Bilinear Invariants of the Spinor Representation of Spin (p,q) , 1995, math/9511215.

[47]  Andree Lischewski The Cauchy problem for parallel spinors as first-order symmetric hyperbolic system , 2015, 1503.04946.

[48]  L. Conlon,et al.  Transversally parallelizable foliations of codimension two , 1974 .

[49]  C. Lazaroiu,et al.  Real spinor bundles and real Lipschitz structures , 2016, Asian Journal of Mathematics.