Platinum group elements in impactites of the ICDP Chicxulub drill core Yaxcopoil‐1: Are there traces of the projectile?

Abstract— This study presents results of platinum group element (PGE) analyses of impactites from the Yaxcopoil‐1 (Yax‐1) and Yucatán 6 drill cores of the 180 km‐diameter Chicxulub crater. These are the main elements used for projectile identification. They were determined by nickel sulfide fire assay combined with inductively coupled plasma mass spectrometry. The concentration of PGE in the samples are low. The concentration patterns of the suevite samples resemble the pattern of the continental crust. We conclude that any meteoritic fraction in these samples is below 0.05%. A syn‐ and post‐impact modification of the PGE pattern from meteoritic toward a continental crust pattern is very unlikely. The globally distributed fallout at the Cretaceous‐Tertiary (K/T) boundary, however, has high PGE concentrations. Therefore, the lack of a significant meteoritic PGE signature in the crater is not an argument for a PGE‐poor impactor. Taking the results of three‐dimensional numerical simulations of the Chicxulub event into account, the following conclusions are drawn: 1) The main fraction of the impactor was ejected into and beyond the stratosphere, distributed globally, and deposited in the K/T boundary clay; and 2) the low amount of projectile contamination in the Yax‐1 lithologies may reflect an oblique impact. However, the role of volatiles in the mixing process between projectile and target is not well‐understood and may also have played a fundamental role.

[1]  A. Wittmann,et al.  Origin and emplacement of the impact formations at Chicxulub, Mexico, as revealed by the ICDP deep drilling at Yaxcopoil‐1 and by numerical modeling , 2004 .

[2]  A. Wittmann,et al.  Composition of impact melt particles and the effects of post‐impact alteration in suevitic rocks at the Yaxcopoil‐1 drill core, Chicxulub crater, Mexico , 2004 .

[3]  D. Kring,et al.  Osmium isotope constraints on the proportion of bolide component in Chicxulub impact melt rocks , 2004 .

[4]  A. Wittmann,et al.  Geochemistry of drill core samples from Yaxcopoil‐1, Chicxulub impact crater, Mexico , 2004 .

[5]  J. Morgan,et al.  Investigating a 65-Ma Old smoking gun: Deep drilling of the Chicxulub impact structure , 2003 .

[6]  A. Wittmann,et al.  Properties, Classification, and Genetic Interpretation of the Allochthonous Impact Formations of the ICDP Chicxulub Drill Core YAX-1 , 2003 .

[7]  I. McDonald Clearwater East impact structure: A re‐interpretation of the projectile type using new platinum‐group element data from meteorites , 2002 .

[8]  C. Neal,et al.  Method of Data Reduction and Uncertainty Estimation for Platinum‐Group Element Data Using Inductively Coupled Plasma‐Mass Spectrometry , 2002 .

[9]  B. Peucker‐Ehrenbrink,et al.  Rhenium‐osmium isotope systematics and platinum group element concentrations: Loess and the upper continental crust , 2001 .

[10]  M. Andreoli,et al.  Platinum-group elements in the Morokweng impact structure, South Africa: Evidence for the impact of a large ordinary chondrite projectile at the Jurassic-Cretaceous boundary , 2001 .

[11]  D. Nahon,et al.  Early weathering of palladium gold under lateritic conditions, Maquiné Mine, Minas Gerais, Brazil. , 2000 .

[12]  H. Melosh,et al.  Hydrocode modeling of oblique impacts: The fate of the projectile , 2000 .

[13]  H. Melosh,et al.  Hydrocode modeling of Chicxulub as an oblique impact event , 1999 .

[14]  C. A. C. VarajaÄ,et al.  Early weathering of palladium gold under lateritic conditions , Maquine Mine , Minas Gerais , Brazil , 1999 .

[15]  J. Erzinger,et al.  Determination of the Platinum‐Group Elements and Gold in Twenty Rock Reference Materials by Inductively Coupled Plasma‐Mass Spectrometry (ICP‐MS) after Pre‐Concentration by Nickel Sulfide Fire Assay , 1998 .

[16]  F. Kyte A meteorite from the Cretaceous/Tertiary boundary , 1998, Nature.

[17]  G. Lugmair,et al.  Isotopic evidence for the Cretaceous-Tertiary impactor and its type. , 1998, Science.

[18]  I. McDonald The Need for a Common Framework for Collection and Interpretation of Data in Platinum-Group Element Geochemistry , 1998 .

[19]  D. Stöffler,et al.  The Two Different Melt Rocks of the Chicxulub Impact Crater and Where is the IR Anomaly , 1998 .

[20]  C. Koeberl,et al.  Re–Os isotope systematics as a diagnostic tool for the study of impact craters and distal ejecta , 1997 .

[21]  C. Koeberl,et al.  Morokweng, South Africa: A large impact structure of Jurassic-Cretaceous boundary age , 1997 .

[22]  P. Schultz,et al.  Cretaceous-Tertiary (Chicxulub) impact angle and its consequences , 1996 .

[23]  D. Lindstrom,et al.  Iridium Metal in Chicxulub Impact Melt: Forensic Chemistry on the K-T Smoking Gun , 1996, Science.

[24]  T. Ahrens,et al.  Fractionation of ruthenium from iridium at the Cretaceous-Tertiary boundary , 1995 .

[25]  K. H. Wedepohl,et al.  The Composition of the Continental Crust , 1995 .

[26]  G. Hall,et al.  Analysis of geological materials for gold, platinum and palladium at low ppb levels by fire assay-ICP mass spectrometry , 1994 .

[27]  K. Govindaraju,et al.  1994 REPORT ON ZINNWALDITE ZW‐C ANALYSED BY NINETY‐TWO GIT‐IWG MEMBER‐LABORATORIES , 1994 .

[28]  C. Koeberl,et al.  Evidence for a Meteoritic Component in Impact Melt Rock from the Chicxulub Structure , 1994 .

[29]  W. Goodfellow,et al.  The Cretaceous-Tertiary fireball layer, ejecta layer and coal seam: Platinum-group element content and mineralogy of size fractions , 1994 .

[30]  K. Govindaraju,et al.  1994 compilation of working values and sample description for 383 geostandards , 1994 .

[31]  W. Goodfellow,et al.  Use of platinum-group elements for impactor identification: Terrestrial impact craters and Cretaceous-Tertiary boundary , 1993 .

[32]  H. Palme,et al.  Acfer 182 and paired samples, an iron-rich carbonaceous chondrite: Similarities with ALH85085 and relationship to CR chondrites , 1993 .

[33]  M. Cintala,et al.  An analysis of differential impact melt‐crater scaling and implications for the terrestrial impact record , 1992 .

[34]  G. Brent Dalrymple,et al.  New links between the Chicxulub impact structure and the Cretaceous/Tertiary boundary , 1992, Nature.

[35]  A. Montanari,et al.  Coeval 40Ar/39Ar Ages of 65.0 Million Years Ago from Chicxulub Crater Melt Rock and Cretaceous-Tertiary Boundary Tektites , 1992, Science.

[36]  E. Boyle,et al.  Post-depositional mobility of platinum, iridium and rhenium in marine sediments , 1992, Nature.

[37]  G. Schmidt,et al.  The determination of platinum group elements (PGE) in target rocks and fall-back material of the Nördlinger Ries impact crater, Germany , 1994 .

[38]  M. Pilkington,et al.  Chicxulub Crater: A possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico , 1991 .

[39]  V. Gostin,et al.  ACRAMAN IMPACT EJECTA AND HOST SHALES - EVIDENCE FOR LOW-TEMPERATURE MOBILIZATION OF IRIDIUM AND OTHER PLATINOIDS , 1990 .

[40]  J. Wasson,et al.  Compositions of chondrites , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[41]  G. Hall,et al.  Review of methods to determine gold, platinum and palladium in production-oriented geochemical laboratories, with application of a statistical procedure to test for bias , 1988 .

[42]  J. Smit,et al.  Siderophile interelement variations in the Cretaceous-Tertiary boundary sediments from Caravaca, Spain , 1985 .

[43]  G. A. Wandless,et al.  Strangways Crater, Northern Territory, Australia: Siderophile element enrichment and lithophile element fractionation , 1983 .

[44]  H. Palme Identification of projectiles of large terrestrial impact craters and some implications for the interpretation of Ir-rich Cretaceous/Tertiary boundary layers , 1982 .

[45]  J. Wasson,et al.  Siderophile-enriched sediments from the Cretaceous–Tertiary boundary , 1980, Nature.

[46]  L. W. Alvarez,et al.  Extraterrestrial Cause for the Cretaceous-Tertiary Extinction , 1980, Science.

[47]  H. Palme The Meteoritic Contamination of Terrestrial and Lunar Impact Melts and the Problem of Indigenous Siderophiles in the Lunar Highlands , 1980 .

[48]  J. Smit,et al.  An extraterrestrial event at the Cretaceous–Tertiary boundary , 1980, Nature.

[49]  R. Grieve,et al.  Meteoritic material at four Canadian impact craters , 1979 .

[50]  J. Morgan,et al.  Ries impact crater, southern Germany - Search for meteoritic material , 1979 .

[51]  Gwynn Thomas,et al.  The Geological Society , 1979, Journal of the Geological Society.

[52]  E. Anders,et al.  Meteoritic material at five large impact craters , 1978 .

[53]  A. Rose,et al.  The Geochemical Behavior of Platinum and Palladium in the Weathering Cycle in the Stillwater Complex, Montana , 1974 .