Constrained Dirichlet Boundary Control in L2 for a Class of Evolution Equations

Optimal Dirichlet boundary control based on the very weak solution of a parabolic state equation is analyzed. This approach allows us to consider the boundary controls in $L^2$, which has advantages over approaches which consider control in Sobolev spaces involving (fractional) derivatives. Pointwise constraints on the boundary are incorporated by the primal-dual active set strategy. Its global and local superlinear convergences are shown. A discretization based on space-time finite elements is proposed and numerical examples are included.

[1]  Jean-Pierre Raymond,et al.  ESTIMATES FOR THE NUMERICAL APPROXIMATION OF DIRICHLET BOUNDARY CONTROL FOR SEMILINEAR ELLIPTIC EQUATIONS , 2006 .

[2]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[3]  Roland Becker,et al.  Optimal control of the convection-diffusion equation using stabilized finite element methods , 2007, Numerische Mathematik.

[4]  J. Guermond Stabilization of Galerkin approximations of transport equations by subgrid modelling , 1999 .

[5]  Donald A. French,et al.  Analysis of a robust finite element approximation for a parabolic equation with rough boundary data , 1993 .

[6]  Roland Becker,et al.  Mesh adaptation for Dirichlet flow control via Nitsche's method , 2002 .

[7]  Claes Johnson,et al.  Computational Differential Equations , 1996 .

[8]  J. Raymond,et al.  Dirichlet Boundary Control of Semilinear Parabolic Equations Part 1: Problems with No State Constraints , 2002 .

[9]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[10]  Karl Kunisch,et al.  Feasible and Noninterior Path-Following in Constrained Minimization with Low Multiplier Regularity , 2006, SIAM J. Control. Optim..

[11]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .

[12]  Helmut Maurer,et al.  First and second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems , 1979, Math. Program..

[13]  A. V. Fursikov,et al.  Optimal control of distributed systems , 1999 .

[14]  Angela Kunoth,et al.  Adaptive wavelet schemes for an elliptic control problem with Dirichlet boundary control , 2005, Numerical Algorithms.

[15]  Jacques-Louis Lions,et al.  Mathematical Analysis and Numerical Methods for Science and Technology: Volume 5 Evolution Problems I , 1992 .

[16]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[17]  K. Kunisch,et al.  A semi-smooth Newton method for control constrained boundary optimal control of the Navier–Stokes equations , 2005 .

[18]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[19]  Invariance results for delay and Volterra equations in fractional order Sobolev spaces , 1987 .

[20]  Boris Vexler,et al.  Adaptivity with Dynamic Meshes for Space-Time Finite Element Discretizations of Parabolic Equations , 2007, SIAM J. Sci. Comput..

[21]  P. Hansbo,et al.  Edge stabilization for Galerkin approximations of convection?diffusion?reaction problems , 2004 .

[22]  Hyung-Chun Lee,et al.  Analysis and Computational Methods of Dirichlet Boundary Optimal Control Problems for 2D Boussinesq Equations , 2003, Adv. Comput. Math..

[23]  I. Lasiecka,et al.  Galerkin approximations of abstract parabolic boundary value problems with rough boundary data— L p theory , 1986 .

[24]  L. Hou,et al.  Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls , 1991 .

[25]  Kazufumi Ito,et al.  The Primal-Dual Active Set Method for Nonlinear Optimal Control Problems with Bilateral Constraints , 2004, SIAM J. Control. Optim..

[26]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[27]  J. Zowe,et al.  Second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems , 1979 .

[28]  J. C. de los Reyesa,et al.  A semi-smooth Newton method for control constrained boundary optimal control of the Navier–Stokes equations , 2005 .

[29]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[30]  Boris Vexler,et al.  Finite Element Approximation of Elliptic Dirichlet Optimal Control Problems , 2007 .

[31]  Karl Kunisch,et al.  A Comparison of a Moreau-Yosida-Based Active Set Strategy and Interior Point Methods for Constrained Optimal Control Problems , 2000, SIAM J. Optim..

[32]  Martin Berggren,et al.  Approximations of Very Weak Solutions to Boundary-Value Problems , 2003, SIAM J. Numer. Anal..

[33]  J. Raymond,et al.  Dirichlet Boundary Control of Semilinear Parabolic Equations Part 2: Problems with Pointwise State Constraints , 2002 .

[34]  Faker Ben Belgacem,et al.  Singular perturbation for the Dirichlet boundary control of elliptic problems , 2003 .

[35]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[36]  Boris Vexler,et al.  Adaptive Space-Time Finite Element Methods for Parabolic Optimization Problems , 2007, SIAM J. Control. Optim..

[37]  S. Scott Collis,et al.  Analysis of the Streamline Upwind/Petrov Galerkin Method Applied to the Solution of Optimal Control Problems ∗ , 2002 .

[38]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[39]  Max D. Gunzburger,et al.  The Velocity Tracking Problem for Navier-Stokes Flows With Boundary Control , 2000, SIAM J. Control. Optim..

[40]  K. Kunisch,et al.  Primal-Dual Strategy for Constrained Optimal Control Problems , 1999 .

[41]  Kenneth Eriksson,et al.  Time discretization of parabolic problems by the discontinuous Galerkin method , 1985 .

[42]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[43]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[44]  Roland Becker,et al.  Efficient numerical solution of parabolic optimization problems by finite element methods , 2007, Optim. Methods Softw..

[45]  A. Fursikov Optimal Control of Distributed Systems: Theory and Applications , 2000 .