Review of Adaptive Shock Control Systems

Drag reduction plays a major role in future aircraft design in order to lower emissions in aviation. In transonic flight, the transonic shock induces wave drag and thus increases the overall aircraft drag and hence emissions. In the past decades, shock control has been investigated intensively from an aerodynamic point of view and has proven its efficacy in terms of reducing wave drag. Furthermore, a number of concepts for shock control bumps (SCBs) that can adapt their position and height have been introduced. The implementation of adaptive SCBs requires a trade-off between aerodynamic benefits, system complexity and overall robustness. The challenge is to find a system with low complexity which still generates sufficient aerodynamic improvement to attain an overall system benefit. The objectives of this paper are to summarize adaptive concepts for shock control, and to evaluate and compare them in terms of their advantages and challenges of their system integrity so as to offer a basis for robust comparisons. The investigated concepts include different actuation systems as conventional spoiler actuators, shape memory alloys (SMAs) or pressurized elements. Near-term applications are seen for spoiler actuator concepts while highest controllability is identified for concepts several with smaller actuators such as SMAs.

[1]  Markus Kintscher,et al.  Structural concept of an adaptive shock control bump spoiler , 2017, CEAS Aeronautical Journal.

[2]  A. Suleman,et al.  Morphing of an adaptive shock control bump using pressurized chambers , 2020 .

[3]  Alessandro De Gaspari,et al.  Optimization of compliant adaptive structures in the design of a morphing droop nose , 2020, Smart Materials and Structures.

[4]  G. Vio,et al.  A Numerical Investigation of the Geometric Parametrisation of Shock Control Bumps for Transonic Shock Oscillation Control , 2020, Fluids.

[5]  P. Bruce,et al.  Off-design performance of 2D adaptive shock control bumps , 2020 .

[6]  C. Kemfert,et al.  European Green Deal: Using Ambitious Climate Targets and Renewable Energy to Climb out of the Economic Crisis , 2020 .

[7]  Vilas J. Shinde,et al.  Control of transitional shock wave boundary layer interaction using structurally constrained surface morphing , 2020 .

[8]  Zhichun Yang,et al.  Postponing the Onset and Alleviating the Load of Transonic Buffet by Using Steady and Periodic Tangential Slot Blowing , 2019, Applied Sciences.

[9]  Oliver Bertram,et al.  Preliminary Design and System Considerations for an Active Hybrid Laminar Flow Control System , 2019, Aerospace.

[10]  Vilas J. Shinde,et al.  Transitional shock wave boundary layer interaction over a flexible panel , 2019, Journal of Fluids and Structures.

[11]  Antonio Concilio,et al.  A shape memory alloy torsion actuator for static blade twist , 2019, Journal of Intelligent Material Systems and Structures.

[12]  M. Samimy,et al.  Reinventing the wheel: excitation of flow instabilities for active flow control using plasma actuators , 2019, Journal of Physics D: Applied Physics.

[13]  Alessandro De Gaspari,et al.  Aerodynamic Shape Design and Validation of an Advanced High-Lift Device for a Regional Aircraft with Morphing Droop Nose , 2019, International Journal of Aerospace Engineering.

[14]  N. Qin,et al.  Shock Control of a Low-Sweep Transonic Laminar Flow Wing , 2019, AIAA Journal.

[15]  T. Lutz,et al.  Control of Transonic Buffet by Shock Control Bumps on Wing-Body Configuration , 2019, Journal of Aircraft.

[16]  H. Tan,et al.  Control of Cowl-Shock/Boundary-Layer Interactions by Deformable Shape-Memory Alloy Bump , 2019, AIAA Journal.

[17]  P. Bruce,et al.  FSI study of 2D adaptive shock control bumps , 2019, AIAA Scitech 2019 Forum.

[18]  A. Pohya SELECTED CURRENT CHALLENGES IN THE DEVELOPMENT OF HYBRID LAMINAR FLOW CONTROL ON TRANSPORT AIRCRAFT , 2019 .

[19]  Johannes Riemenschneider,et al.  Pressure-Driven Morphing Devices for 3D Shape Changes With Multiple Degrees-of-Freedom , 2018, Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation, and Control of Adaptive Systems; Integrated System Design and Implementation.

[20]  J. Qiu,et al.  Numerical analysis on shape memory alloy–based adaptive shock control bump , 2018, Journal of Intelligent Material Systems and Structures.

[21]  Matthew Santer,et al.  Optimisation of adaptive shock control bumps with structural constraints , 2018, Aerospace Science and Technology.

[22]  N. Qin,et al.  Quantitative comparison of 2D and 3D shock control bumps for drag reduction on transonic wings , 2018, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering.

[23]  Peter Horst,et al.  Three-dimensional design of a large-displacement morphing wing droop nose device , 2018 .

[24]  R. Kainuma Recent Progress in Shape Memory Alloys , 2018 .

[25]  M. Werner Application of an Adaptive Shock Control Bump for Drag Reduction on a Variable Camber NLF Wing , 2018 .

[26]  Jochen Dehio,et al.  Erarbeitung aktueller vergleichender Strukturdaten für die deutschen Braunkohleregionen. Projektbericht für das Bundesministerium für Wirtschaft und Energie (BMWi): Endbericht , 2018 .

[27]  Lingjiu Zhou,et al.  Passive shock wave/boundary layer control of wing at transonic speeds , 2017 .

[28]  Peter Horst,et al.  Extremely deformable morphing leading edge: Optimization, design and structural testing , 2017 .

[29]  Gareth A. Vio,et al.  A review of recent developments in the understanding of transonic shock buffet , 2017 .

[30]  Ignazio Dimino,et al.  Design and integration sensitivity of a morphing trailing edge on a reference airfoil: The effect on high-altitude long-endurance aircraft performance , 2017 .

[31]  N. Qin,et al.  Using Surface Sensitivity from Mesh Adjoint for Transonic Wing Drag Reduction , 2017 .

[32]  Johannes Riemenschneider,et al.  Evaluation of a Compliant Droop-Nose Morphing Wing Tip via Experimental Tests , 2017 .

[33]  Thorsten Lutz,et al.  A Numerical Study on the Ability of Shock Control Bumps for Buffet Alleviation , 2017 .

[34]  Gianluca Amendola,et al.  Numerical and experimental testing of a morphing upper surface wing equipped with conventional and morphing ailerons , 2017 .

[35]  Sergio Ricci,et al.  Compliant structures-based wing and wingtip morphing devices , 2016 .

[36]  Rafic M. Ajaj,et al.  Morphing aircraft: the need for a new design philosophy , 2016 .

[37]  Matthew Santer,et al.  Aero-Structural Design Optimization of Adaptive Shock Control Bumps , 2016 .

[38]  A. Singhal,et al.  Flow Separation Control over a Boeing Vertol VR-7 using NS-DBD Plasma Actuators , 2016 .

[39]  Michael Rose,et al.  Optimization Tool Assessment for a Large-displacementCompliant Morphing Wing Leading Edge , 2016 .

[40]  Sergio Ricci,et al.  Knowledge-Based Shape Optimization of Morphing Wing for More Efficient Aircraft , 2015 .

[41]  Hans Peter Monner,et al.  Generation of a Shock Control Bump by Pressurized Chambers , 2015 .

[42]  P. Bruce,et al.  Review of research into shock control bumps , 2015 .

[43]  Darren J. Hartl,et al.  Standardization of shape memory alloy test methods toward certification of aerospace applications , 2015 .

[44]  Matthew Santer,et al.  The use of actuated flexible plates for adaptive shock control bumps , 2015 .

[45]  H. Babinsky,et al.  Three-dimensional shock control bumps: Effects of geometry , 2014 .

[46]  Eusebio Valero,et al.  Aerodynamic technologies to improve aircraft performance , 2013 .

[47]  Oliver Rhodes,et al.  Optimal design of morphing structures , 2013 .

[48]  Jerome P. Jarrett,et al.  Toward Designing with Three-Dimensional Bumps for Lift/Drag Improvement and Buffet Alleviation , 2012 .

[49]  H. Babinsky,et al.  Experimental study into the flow physics of three-dimensional shock control bumps , 2012 .

[50]  Srinivas Vasista,et al.  Realization of Morphing Wings: A Multidisciplinary Challenge , 2012 .

[51]  Matthew Santer,et al.  Aeroelastic Optimization of a Morphing 2D Shock Control Bump , 2012 .

[52]  S. Quan Numerical Simulation of Plasma Aerodynamic Actuation for Airfoil Transonic Drag Reduction , 2012 .

[53]  Hans Peter Monner,et al.  DESIGN OF A SMART LEADING EDGE DEVICE FOR LOW SPEED WIND TUNNEL TESTS IN THE EUROPEAN PROJECT SADE , 2011 .

[54]  T. Yun,et al.  Shock control bump parametric research on supercritical airfoil , 2011 .

[55]  Daniel J. Inman,et al.  A Review of Morphing Aircraft , 2011 .

[56]  Oliver Rhodes,et al.  Structural Optimization of a Morphing Shock Control Bump , 2011 .

[57]  Peiqing Liu,et al.  Shock control bump parametric research on supercritical airfoil , 2011 .

[58]  Stephen R Hallett,et al.  AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver , 2011 .

[59]  Russell H. Thomas,et al.  Environmentally Responsible Aviation - Real Solutions for Environmental Challenges Facing Aviation , 2010 .

[60]  M. Santer,et al.  Optimal Problem Deflnition for Optimization of Morphing Structures , 2010 .

[61]  S. Wilkinson,et al.  Dielectric Barrier Discharge Plasma Actuators for Flow Control , 2010 .

[62]  Stephen R Hallett,et al.  AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando , 2010 .

[63]  J. Shang,et al.  Hypersonic Flow Control Using Surface Plasma Actuator , 2008 .

[64]  Holger Babinsky,et al.  A combined experimental and numerical study of flow structures over three-dimensional shock control bumps , 2008 .

[65]  Ewald Krämer,et al.  Numerical and Experimental Validation of Three-Dimensional Shock Control Bumps , 2008 .

[66]  N Qin,et al.  Three-dimensional contour bumps for transonic wing drag reduction , 2008 .

[67]  Emmanuel Benard,et al.  Periodic transonic flow and control , 2008, The Aeronautical Journal (1968).

[68]  Tomas Melin,et al.  Technology Integration for Active Poly-Morphing Winglets Development , 2008 .

[69]  T. Lutz,et al.  Shock-wave/boundary-layer interaction control using three-dimensional bumps for transonic wings , 2007 .

[70]  T. Lutz,et al.  Numerical Optimization of Finite Shock Control Bumps , 2006 .

[71]  Holger Babinsky,et al.  Evaluation of wave drag reduction by flow control , 2005 .

[72]  L. F. Campanile,et al.  The “Fish-Mouth” Actuator: Design Issues and Test Results , 2004 .

[73]  Kwing-So Choi,et al.  Turbulent Boundary-Layer Control for Drag Reduction Using Surface Plasma , 2004 .

[74]  Siegfried Wagner,et al.  Investigations on Shock Control Bumps for Inflnite Swept Wings , 2004 .

[75]  L. F. Campanile,et al.  A shape-memory actuator for surface geometry control , 2003 .

[76]  Holger Babinsky,et al.  Shock/boundary layer interaction control using 3D devices , 2003 .

[77]  J. S. Couldrick,et al.  GS(7)-33(GSW0058) Structural Design of 'Smart' Actuator Flaps for Control of Shock Wave/Boundary Layer Interaction , 2003 .

[78]  J. Shang Validation of Plasma Injection for Hypersonic Blunt-Body Drag Reduction , 2003 .

[79]  J. Fulker A Review of Research at Qinetiq on the Control of Shock Waves , 2002 .

[80]  E. Stanewsky Drag reduction by shock and boundary layer control : results of the project EUROSHOCK II, supported by the European Union, 1996-1999 , 2002 .

[81]  W. Wadehn,et al.  STRUCTURAL CONCEPTS AND AERODYNAMIC DESIGN OF SHOCK CONTROL BUMPS , 2002 .

[82]  E Stanewsky,et al.  Adaptive wing and flow control technology , 2001 .

[83]  Trevor M. Young,et al.  Investigation of hybrid laminar flow control (HLFC) surfaces , 2001 .

[84]  Egon Stanewsky,et al.  Aerodynamic benefits of adaptive wing technology , 2000 .

[85]  Holger Hanselka,et al.  An adaptive spoiler to control the transonic shock , 2000 .

[86]  H. Rosemann,et al.  Shock control on a swept wing , 2000 .

[87]  Holger Hanselka,et al.  Design aspects of the adaptive wing — the elastic trailing edge and the local spoiler bump , 2000, The Aeronautical Journal (1968).

[88]  L. F. Campanile,et al.  Adaptive wing model for wind channel tests , 2000 .

[89]  V. I. Lagutin,et al.  Aerodynamic drag reduction by plasma and hot-gas injection , 2000 .

[90]  Siegfried Wagner,et al.  NUMERICAL OPTIMISATION OF ADAPTIVE TRANSONIC AIRFOILS WITH VARIABLE CAMBER , 2000 .

[91]  P. R. Ashill,et al.  A Review of Flow Control Research at Dera , 1999 .

[92]  G. Dargel,et al.  Assessment of the Capability of Drag Reduction of the Shock Control Device ‘SC Bump’ on Airfoil Flows and Application Aspects on Wings , 1999 .

[93]  Egon Stanewsky,et al.  EUROSHOCK - Drag reduction by passive shock control : Results of the project EUROSHOCK, AER2-CT92-0049 ; Supported by the European Union 1993-1995 , 1997 .

[94]  Egon Stanewsky,et al.  EUROSHOCK - Drag Reduction by Passive Shock Control , 1997 .

[95]  Marcel Lesieur,et al.  Fluid Mechanics and Its Applications , 1997 .