Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules

The elytra from dry specimens of the hercules beetle, Dynastes hercules appear khaki-green in a dry atmosphere and turn black passively under high humidity levels. New scanning electron images, spectrophotometric measurements and physical modelling are used to unveil the mechanism of this colouration switch. The visible dry-state greenish colouration originates from a widely open porous layer located 3 μm below the cuticle surface. The structure of this layer is three-dimensional, with a network of filamentary strings, arranged in layers parallel to the cuticle surface and stiffening an array of strong cylindrical pillars oriented normal to the surface. Unexpectedly, diffraction plays a significant role in the broadband colouration of the cuticle in the dry state. The backscattering caused by this layer disappears when water infiltrates the structure and weakens the refractive index differences.

[1]  K. Gentil Elektronenmikroskopische Untersuchung des Feinbaues Schillernder Leisten von Morpho-Schuppen , 1942, Zeitschrift für Morphologie und Ökologie der Tiere.

[2]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.

[3]  H. E. Hinton,et al.  Physiological colour change in the elytra of the hercules beetle, Dynastes hercules , 1973 .

[4]  Che Ting Chan,et al.  Photonic band gaps in three dimensions: New layer-by-layer periodic structures , 1994 .

[5]  Andrew R. Parker,et al.  Biomimetics of photonic nanostructures. , 2007, Nature nanotechnology.

[6]  Andrew R. Parker,et al.  515 million years of structural colour , 2000 .

[7]  Rodolfo H. Torres,et al.  Structural colouration of mammalian skin: convergent evolution of coherently scattering dermal collagen arrays , 2004, Journal of Experimental Biology.

[8]  Michael F. Land,et al.  A Multilayer Interference Reflector in the Eye of the Scallop, Pecten Maximus , 1966 .

[9]  H. E. Hinton,et al.  Physiological Colour Change in the Hercules Beetle , 1972, Nature.

[10]  F. A. Mumpton La roca magica: uses of natural zeolites in agriculture and industry. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[11]  A. Parker,et al.  Water capture by a desert beetle , 2001, Nature.

[12]  C. W. Mason,et al.  Structural Colors in Insects. II , 1926 .

[13]  J. Vigneron,et al.  Color-selecting reflectors inspired from biological periodic multilayer structures. , 2006, Optics express.

[14]  R. Wootton,et al.  Quantified interference and diffraction in single Morpho butterfly scales , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[15]  Krisztián Kertész,et al.  Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Olivier Deparis,et al.  Switchable reflector in the Panamanian tortoise beetle Charidotella egregia (Chrysomelidae: Cassidinae). , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Jean Pol Vigneron,et al.  Variation of a photonic crystal color with the Miller indices of the exposed surface , 2006, SPIE OPTO.

[18]  Lord Rayleigh,et al.  VII. On the optical character of some brilliant animal colours , 1919 .

[19]  Alain Cornet,et al.  Spectral filtering of visible light by the cuticle of metallic woodboring beetles and microfabrication of a matching bioinspired material. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  L. Rayleigh,et al.  Studies of iridescent colour, and the structure producing it. IV.—Iridescent beetles , 1923 .

[21]  J. Pendry,et al.  Calculation of photon dispersion relations. , 1992, Physical review letters.

[22]  Jean-Pol Vigneron,et al.  Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera). , 2005 .

[23]  Lei Shi,et al.  Iridescence in the neck feathers of domestic pigeons. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  D. Larkman,et al.  Photonic crystals , 1999, International Conference on Transparent Optical Networks (Cat. No. 99EX350).

[25]  Noritsugu Yamamoto,et al.  Optical properties of three-dimensional photonic crystals based on III–V semiconductors at infrared to near-infrared wavelengths , 1999 .

[26]  Albert A. Michelson,et al.  LXI. On metallic colouring in birds and insects , 1911 .

[27]  A R Moller,et al.  Modification of specular reflexion and light transmission by biological surface structures , 1968, Quarterly Reviews of Biophysics.

[28]  Y. P. Nekrutenko ’Gynandromorphic Effect‘ and the Optical Nature of Hidden Wing-pattern in Gonepteryx rhamni L. (Lepidoptera, Pieridae) , 1965, Nature.

[29]  S. Guenneau,et al.  Homogenization of 3D finite chiral photonic crystals , 2007 .

[30]  S. Caveney,et al.  SCARABAEID BEETLE EXOCUTICLE AS AN OPTICAL ANALOGUE OF CHOLESTERIC LIQUID CRYSTALS , 1969, Biological reviews of the Cambridge Philosophical Society.