Critical roles of metal–organic frameworks in improving the Zn anode in aqueous zinc-ion batteries

[1]  S. Kheawhom,et al.  Tailoring the MOF structure via ligand optimization afforded a dandelion flower like CoS/Co-Nx/CoNi/NiS catalyst to enhance the ORR/OER in zinc-air batteries. , 2022, Nanoscale.

[2]  S. Dou,et al.  Anode optimization strategies for aqueous zinc-ion batteries , 2022, Chemical science.

[3]  D. Wilkinson,et al.  Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes. , 2022, Chemical reviews.

[4]  Qiuran Yang,et al.  A strategy for anode modification for future zinc-based battery application. , 2022, Materials horizons.

[5]  M. Jaroniec,et al.  Triple‐Function Electrolyte Regulation toward Advanced Aqueous Zn‐Ion Batteries , 2022, Advanced materials.

[6]  Yinghan Wang,et al.  Modulating Coordination Structures and Metal Environments of MOFs-Engineered Electrocatalysts for Water Electrolysis , 2022, Chemical Engineering Journal.

[7]  S. Kheawhom,et al.  Performance enhancement through parameter optimization for a vertically rechargeable zinc-air flow battery , 2022, Journal of Industrial and Engineering Chemistry.

[8]  Guo Gao,et al.  Recent Progress of Advanced Conductive Metal-Organic Frameworks: Precise Synthesis, Electrochemical Energy Storage Applications, and Future Challenges. , 2022, Small.

[9]  W. He,et al.  Uniform In Situ Grown ZIF-L Layer for Suppressing Hydrogen Evolution and Homogenizing Zn Deposition in Aqueous Zn-Ion Batteries. , 2022, ACS applied materials & interfaces.

[10]  Jingyu Sun,et al.  Artificial Interphase Layer for Stabilized Zn Anodes: Progress and Prospects. , 2022, Small.

[11]  C. Guan,et al.  Stable Imprinted Zincophilic Zn Anodes with High Capacity , 2022, Advanced Functional Materials.

[12]  Lei Wang,et al.  Mof-Derived Defect-Rich Ceo2 as Ion-Selective Smart Artificial Sei for Dendrite-Free Zn-Ion Battery , 2022, SSRN Electronic Journal.

[13]  Sangyeop Lee,et al.  Toward High Energy Density Aqueous Zinc‐Ion Batteries: Recent Progress and Future Perspectives , 2022, Batteries & Supercaps.

[14]  Xiaodi Ren,et al.  Surface Transformation Enables a Dendrite‐Free Zinc‐Metal Anode in Nonaqueous Electrolyte , 2022, Advanced materials.

[15]  Yuxiu Liu,et al.  Scientific Challenges and Improvement Strategies of Zn‐Based Anodes for Aqueous Zn‐Ion Batteries , 2022, Chemical record.

[16]  Shubin Yang,et al.  Triggering Zn2+ Unsaturated Hydration Structure via Hydrated Salt Electrolyte for High Voltage and Cycling Stable Rechargeable Aqueous Zn Battery , 2022, Advanced Energy Materials.

[17]  H. Pang,et al.  Metal-organic framework (MOF) composites as promising materials for energy storage applications. , 2022, Advances in colloid and interface science.

[18]  Shuhao Xiao,et al.  Atomically Dispersed Cu in Zeolitic Imidazolate Framework Nanoflake Array for Dendrite-Free Zn Metal Anode. , 2022, Small.

[19]  Y. Liu,et al.  Toward Long‐Life Aqueous Zinc Ion Batteries by Constructing Stable Zinc Anodes , 2022, Chemical record.

[20]  Jingyu Sun,et al.  Printing‐Scalable Ti3C2Tx MXene‐Decorated Janus Separator with Expedited Zn2+ Flux toward Stabilized Zn Anodes , 2022, Advanced Functional Materials.

[21]  Xiehong Cao,et al.  Metal‐Organic Framework‐Based Materials for Aqueous Zinc‐Ion Batteries: Energy Storage Mechanism and Function , 2022, Chemical record.

[22]  Inamuddin,et al.  Recent development of aqueous zinc‐ion battery cathodes and future challenges: Review , 2022, International Journal of Energy Research.

[23]  Kwan-Woo Nam,et al.  Metal–Organic Framework for Dendrite-Free Anodes in Aqueous Rechargeable Zinc Batteries , 2022, Electrochimica Acta.

[24]  S. Siwamogsatham,et al.  Dendrite suppression with zirconium (IV) based metal-organic frameworks modified glass microfiber separator for ultralong-life rechargeable zinc-ion batteries , 2022, Journal of Science: Advanced Materials and Devices.

[25]  C. Jo,et al.  A Review on Current Collector Coating Methods for Next-generation Batteries , 2022, Chemical Engineering Journal.

[26]  Xiaogang Zhang,et al.  Recent Progress and Prospects on Dendrite‐free Engineerings for Aqueous Zinc Metal Anodes , 2022, ENERGY & ENVIRONMENTAL MATERIALS.

[27]  Chengliang Wang,et al.  Challenges and Perspectives of Organic Multivalent Metal‐Ion Batteries , 2022, Advanced materials.

[28]  Yitai Qian,et al.  Highly Reversible Zn Metal Anodes Enabled by Freestanding, Lightweight, and Zincophilic MXene/Nanoporous Oxide Heterostructure Engineered Separator for Flexible Zn-MnO2 Batteries. , 2022, ACS nano.

[29]  Xiongwei Wu,et al.  Comprehensive review on zinc‐ion battery anode: Challenges and strategies , 2022, InfoMat.

[30]  Zhengbing Qi,et al.  Surface and Interface Engineering of Zn Anodes in Aqueous Rechargeable Zn-Ion Batteries. , 2022, Small.

[31]  Chengyi Hou,et al.  Synergistic Solvation and Interface Regulations of Eco‐Friendly Silk Peptide Additive Enabling Stable Aqueous Zinc‐Ion Batteries , 2022, Advanced Functional Materials.

[32]  Yongling An,et al.  Robust Nitrogen/Selenium Engineered MXene/ZnSe Hierarchical Multifunctional Interfaces for Dendrite-Free Zinc-Metal Batteries , 2022, Energy Storage Materials.

[33]  Zhijie Wang,et al.  Electrolyte Engineering Enables High Performance Zinc-Ion Batteries. , 2022, Small.

[34]  Feng Zhang,et al.  Tailoring Local Electrolyte Solvation Structure via a Mesoporous Molecular Sieve for Dendrite‐Free Zinc Batteries , 2022, Advanced Functional Materials.

[35]  Licheng Miao,et al.  Reshaping the electrolyte structure and interface chemistry for stable aqueous zinc batteries , 2022, Energy Storage Materials.

[36]  Guanglu Ge,et al.  Highly stable and durable Zn-metal anode coated by bi-functional protective layer suppressing uncontrollable dendrites growth and corrosion , 2022, Chemical Engineering Journal.

[37]  Zhongwei Chen,et al.  A MOF‐Derivative Decorated Hierarchical Porous Host Enabling Ultrahigh Rates and Superior Long‐Term Cycling of Dendrite‐Free Zn Metal Anodes , 2022, Advanced materials.

[38]  S. Siwamogsatham,et al.  Stability enhancement of zinc‐ion batteries using nonaqueous electrolytes , 2022, Batteries & Supercaps.

[39]  Yongfeng Zhou,et al.  Toward Hydrogen‐Free and Dendrite‐Free Aqueous Zinc Batteries: Formation of Zincophilic Protective Layer on Zn Anodes , 2022, Advanced science.

[40]  B. Jia,et al.  Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives , 2022, Nano-Micro Letters.

[41]  S. Lamp,et al.  Large-scale battery storage, short-term market outcomes, and arbitrage , 2021, Energy Economics.

[42]  S. Liao,et al.  Recent advances in MOFs/MOF derived nanomaterials toward high-efficiency aqueous zinc ion batteries , 2022, Coordination Chemistry Reviews.

[43]  Tuo Xin,et al.  Practical Zn anodes enabled by a Ti-MOF-derived coating for aqueous batteries , 2022, Journal of Materials Chemistry A.

[44]  L. Ci,et al.  MOF-based Ionic Sieve Interphase for Regulated Zn2+ Flux Toward Dendrite-Free Aqueous Zinc Ion Battery , 2022, Journal of Materials Chemistry A.

[45]  Yunhui Huang,et al.  Strategies on regulating Zn2+ solvation structure for dendrites-free and side reactions-suppressed zinc-ion batteries , 2022, Energy & Environmental Science.

[46]  S. Kheawhom,et al.  Recent advances in oxygen electrocatalysts based on tunable structural polymers , 2022, Materials Today Chemistry.

[47]  Q. Liao,et al.  Electricity generation and electrochemical insight of zinc-air battery via microfluidic flow control , 2022, Chemical Engineering Journal.

[48]  L. Luo,et al.  A review on thermal management of lithium-ion batteries for electric vehicles , 2022 .

[49]  Yunhui Huang,et al.  High-Capacity and Long-Life Zinc Electrodeposition Enabled by a Self-Healable and Desolvation Shield for Aqueous Zinc-Ion Batteries. , 2021, Angewandte Chemie.

[50]  Yijing Wang,et al.  Dual Porous 3D Zinc Anodes toward Dendrite-Free and Long Cycle Life Zinc-Ion Batteries. , 2021, ACS applied materials & interfaces.

[51]  Himanshu,et al.  Metal organic frameworks as hybrid porous materials for energy storage and conversion devices: A review , 2021 .

[52]  Li Li,et al.  Rational Design of MOF-Based Materials for Next-Generation Rechargeable Batteries , 2021, Nano-Micro Letters.

[53]  Chaowei Li,et al.  Roadmap on the Protective Strategies of Zinc anodes in Aqueous Electrolyte , 2021, Energy Storage Materials.

[54]  Yanfeng Dong,et al.  Recent progress of carbon nanomaterials for high-performance cathodes and anodes in aqueous zinc ion batteries , 2021 .

[55]  Xiaodi Ren,et al.  Highly reversible aqueous zinc metal batteries enabled by fluorinated interphases in localized high concentration electrolytes , 2021, Journal of Materials Chemistry A.

[56]  Hangchao Wang,et al.  A review of zinc-based battery from alkaline to acid , 2021 .

[57]  Yongjiu Lei,et al.  Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries , 2021, Energy & Environmental Science.

[58]  Yong Lu,et al.  Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode. , 2021, Angewandte Chemie.

[59]  Yusong Pan,et al.  Coordinately Unsaturated Manganese-Based Metal-Organic Frameworks as a High-Performance Cathode for Aqueous Zinc-Ion Batteries. , 2021, ACS applied materials & interfaces.

[60]  Ang Li,et al.  Different dimensional nanoadditives for thermal conductivity enhancement of phase change materials: Fundamentals and applications , 2021, Nano Energy.

[61]  Wei Huang,et al.  Regulating Dendrite‐Free Zinc Deposition by 3D Zincopilic Nitrogen‐Doped Vertical Graphene for High‐Performance Flexible Zn‐Ion Batteries , 2021, Advanced Functional Materials.

[62]  Zhaolin Liu,et al.  Aqueous Rechargeable Multivalent Metal‐Ion Batteries: Advances and Challenges , 2021, Advanced Energy Materials.

[63]  Yao Zhou,et al.  Metal organic framework (MOF) in aqueous energy devices , 2021 .

[64]  Yongming Sun,et al.  Localizing concentrated electrolyte in pore geometry for highly reversible aqueous Zn metal batteries , 2021 .

[65]  S. Siwamogsatham,et al.  Highly Stable Rechargeable Zinc-ion Battery using Dimethyl Sulfoxide Electrolyte , 2021 .

[66]  H. Duan,et al.  3D‐Printed Multi‐Channel Metal Lattices Enabling Localized Electric‐Field Redistribution for Dendrite‐Free Aqueous Zn Ion Batteries , 2021, Advanced Energy Materials.

[67]  Ming Liu,et al.  Metal/Covalent‐Organic Framework Based Cathodes for Metal‐Ion Batteries , 2021, Advanced Energy Materials.

[68]  Chunsheng Wang,et al.  Efficient Water Splitting System Enabled by Multifunctional Platinum‐Free Electrocatalysts , 2021, Advanced Functional Materials.

[69]  N. Han,et al.  A cation selective separator induced cathode protective layer and regulated zinc deposition for zinc ion batteries , 2021, Journal of Materials Chemistry A.

[70]  C. Zhi,et al.  Calendar Life of Zn Batteries Based on Zn Anode with Zn Powder/Current Collector Structure , 2021, Advanced Energy Materials.

[71]  C. Zhi,et al.  Toward Practical High‐Areal‐Capacity Aqueous Zinc‐Metal Batteries: Quantifying Hydrogen Evolution and a Solid‐Ion Conductor for Stable Zinc Anodes , 2021, Advanced materials.

[72]  Hong Wang,et al.  The recent progress and perspectives on metal- and covalent-organic framework based solid-state electrolytes for lithium-ion batteries , 2021 .

[73]  Yanglong Hou,et al.  Comprehensive Analyses of Aqueous Zn Metal Batteries: Characterization Methods, Simulations, and Theoretical Calculations , 2021, Advanced Energy Materials.

[74]  F. Pan,et al.  Simultaneously Regulating Uniform Zn2+ Flux and Electron Conduction by MOF/rGO Interlayers for High-Performance Zn Anodes , 2021, Nano-micro letters.

[75]  S. Siahrostami,et al.  High‐Throughput Electron Diffraction Reveals a Hidden Novel Metal–Organic Framework for Electrocatalysis , 2021, Angewandte Chemie.

[76]  Luyi Yang,et al.  Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries , 2021, Nano Energy.

[77]  H. Yang,et al.  Recent progress in aqueous zinc-ion batteries: a deep insight into zinc metal anodes , 2021 .

[78]  Zichao Yan,et al.  Artificial Interphase Engineering to Stabilize Aqueous Zinc Metal Anodes , 2021, Nanoscale.

[79]  Q. Yan,et al.  Pathways towards high energy aqueous rechargeable batteries , 2020 .

[80]  F. Hou,et al.  Strategies for the Stabilization of Zn Metal Anodes for Zn‐Ion Batteries , 2020, Advanced Energy Materials.

[81]  Zaiping Guo,et al.  Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries , 2020 .

[82]  Yang Yang,et al.  Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries , 2020 .

[83]  T. Ma,et al.  Metal–organic framework based bifunctional oxygen electrocatalysts for rechargeable zinc–air batteries: current progress and prospects , 2020, Chemical science.

[84]  X. Liang,et al.  Dendrite-free Zn anode with dual channel 3D porous frameworks for rechargeable Zn batteries , 2020 .

[85]  Kai Yang,et al.  Hybrid Hydrogel Electrolyte Based on Metal-Organic Supermolecular Self-assembly and Polymer Chemical Crosslinking for Rechargeable Aqueous Zn-MnO2 Battery. , 2020, ACS applied materials & interfaces.

[86]  P. He,et al.  A Metal–Organic Framework as a Multifunctional Ionic Sieve Membrane for Long‐Life Aqueous Zinc–Iodide Batteries , 2020, Advanced materials.

[87]  Kang Xu,et al.  Realizing high zinc reversibility in rechargeable batteries , 2020 .

[88]  Xiaobo Ji,et al.  Revealing the role of crystal orientation of protective layers for stable zinc anode , 2020, Nature Communications.

[89]  Jiazhao Wang,et al.  Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries , 2020 .

[90]  G. Cao,et al.  Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry. , 2020, Chemical reviews.

[91]  F. Kang,et al.  High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials , 2020, Nano-Micro Letters.

[92]  T. Deng,et al.  Hydrophobic organic electrolyte protected Zn anodes for aqueous Zn batteries. , 2020, Angewandte Chemie.

[93]  S. Siwamogsatham,et al.  MnO2 Heterostructure on Carbon Nanotubes as Cathode Material for Aqueous Zinc-Ion Batteries , 2020, International journal of molecular sciences.

[94]  S. Kheawhom,et al.  Discharge profile of a zinc-air flow battery at various electrolyte flow rates and discharge currents , 2020, Scientific Data.

[95]  P. Bai,et al.  Concentration polarization and metal dendrite initiation in isolated electrolyte microchannels , 2020, 2006.09523.

[96]  Luyi Yang,et al.  An interface bridged organic-inorganic layer suppressing dendrite and side reactions for ultra-long life aqueous Zn metal anodes. , 2020, Angewandte Chemie.

[97]  Zhiqiang Niu,et al.  Materials chemistry for rechargeable zinc-ion batteries. , 2020, Chemical Society reviews.

[98]  Yuezhan Feng,et al.  Stabilization Perspective on Metal Anodes for Aqueous Batteries , 2020, Advanced Energy Materials.

[99]  Qiang Xu,et al.  Metal-Organic Framework-Based Catalysts with Single Metal Sites. , 2020, Chemical reviews.

[100]  Chaojiang Niu,et al.  Advances in metal-organic framework coatings: versatile synthesis and broad applications. , 2020, Chemical Society reviews.

[101]  F. Pan,et al.  Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries , 2020, Nano Energy.

[102]  Xiaowei Mu,et al.  Constructing a supersaturated electrolyte front surface for stable rechargeable aqueous zinc batteries. , 2020, Angewandte Chemie.

[103]  R. Ruoff,et al.  Metal‐Organic Framework Integrated Anodes for Aqueous Zinc‐Ion Batteries , 2020, Advanced Energy Materials.

[104]  Xiaobo Ji,et al.  Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. , 2020, Angewandte Chemie.

[105]  Jiang Zhou,et al.  Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc‐ion Batteries , 2020, ENERGY & ENVIRONMENTAL MATERIALS.

[106]  Huamin Zhang,et al.  Boron Nitride Nanosheets as Heat-porter Enabled a Long-life Zinc-based Flow Battery. , 2020, Angewandte Chemie.

[107]  S. Kheawhom,et al.  Binder-Free Centimeter-Long V2O5 Nanofibers on Carbon Cloth as Cathode Material for Zinc-Ion Batteries , 2019 .

[108]  G. Cui,et al.  Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation , 2019, Nature Communications.

[109]  Jiang Zhou,et al.  Issues and opportunities facing aqueous zinc-ion batteries , 2019, Energy & Environmental Science.

[110]  Xianxi Zhang,et al.  Hierarchical Porous Metallic V2O3@C for Advanced Aqueous Zinc-Ion Batteries. , 2019, ACS applied materials & interfaces.

[111]  Dong‐Dong Zhou,et al.  Adsorptive separation of carbon dioxide: From conventional porous materials to metal–organic frameworks , 2019, EnergyChem.

[112]  Y. Zhao,et al.  Engineering Donor-acceptor Heterostructure Crystals for Photonic Logic Computation. , 2019, Angewandte Chemie.

[113]  C. Zhi,et al.  Do Zinc Dendrites Exist in Neutral Zinc Batteries: A Developed Electrohealing Strategy to In Situ Rescue In‐Service Batteries , 2019, Advanced materials.

[114]  Luyi Yang,et al.  Artificial Solid-Electrolyte Interface Facilitating Dendrite-Free Zinc Metal Anodes via Nano-Wetting Effect. , 2019, ACS applied materials & interfaces.

[115]  Qinghua Zhang,et al.  An Electrolytic Zn-MnO2 Battery for High-Voltage and Scalable Energy Storage. , 2019, Angewandte Chemie.

[116]  Xiaoyuan Chen,et al.  Recent progress in nanoscale metal-organic frameworks for drug release and cancer therapy. , 2019, Nanomedicine.

[117]  Ming Zhong,et al.  Specific K+ Binding Sites as CO2 Traps in a Porous MOF for Enhanced CO2 Selective Sorption. , 2019, Small.

[118]  Weishan Li,et al.  Hierarchical Co3O4 Nano‐Micro Arrays Featuring Superior Activity as Cathode in a Flexible and Rechargeable Zinc–Air Battery , 2019, Advanced science.

[119]  Jiajie Liu,et al.  A MOF-based single-ion Zn2+ solid electrolyte leading to dendrite-free rechargeable Zn batteries , 2019, Nano Energy.

[120]  F. Kang,et al.  3D Porous Copper Skeleton Supported Zinc Anode toward High Capacity and Long Cycle Life Zinc Ion Batteries , 2019, ACS Sustainable Chemistry & Engineering.

[121]  H. Pang,et al.  Applications of Metal–Organic‐Framework‐Derived Carbon Materials , 2018, Advanced materials.

[122]  John Holoubek,et al.  A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. , 2018, Chemical communications.

[123]  Yongyao Xia,et al.  Recent Progress of Rechargeable Batteries Using Mild Aqueous Electrolytes , 2018, Small Methods.

[124]  Yong Lu,et al.  High-capacity aqueous zinc batteries using sustainable quinone electrodes , 2018, Science Advances.

[125]  Lei Fan,et al.  A “cation-anion regulation” synergistic anode host for dendrite-free lithium metal batteries , 2018, Science Advances.

[126]  David P. Wilkinson,et al.  Recent advances in all-solid-state rechargeable lithium batteries , 2017 .

[127]  Boštjan Genorio,et al.  Design principles for hydrogen evolution reaction catalyst materials , 2016 .