Disjoint Stable Matchings in Linear Time

We show that given a SM instance G as input we can find a largest collection of pairwise edge-disjoint stable matchings of G in time linear in the input size. This extends two classical results: 1. The Gale-Shapley algorithm, which can find at most two ("extreme") pairwise edge-disjoint stable matchings of G in linear time, and 2. The polynomial-time algorithm for finding a largest collection of pairwise edge-disjoint perfect matchings (without the stability requirement) in a bipartite graph, obtained by combining K\"{o}nig's characterization with Tutte's f-factor algorithm.

[1]  Boris G. Pittel,et al.  On the Likely Number of Solutions for the Stable Marriage Problem , 2009, Combinatorics, Probability and Computing.

[2]  L. B. Wilson,et al.  The stable marriage problem , 1971, Commun. ACM.

[3]  Donald E. Knuth Mariages stables et leurs relations avec d'autres problèmes combinatoires : introduction à l'analyse mathématique des algorithmes , 1976 .

[4]  William H. Lane,et al.  Stable Marriage Problem , 2001 .

[5]  Chung-Piaw Teo,et al.  The Geometry of Fractional Stable Matchings and Its Applications , 1998, Math. Oper. Res..

[6]  Ralph J. Faudree,et al.  Neighborhood conditions and edge-disjoint perfect matchings , 1991, Discret. Math..

[7]  W. T. Tutte A Short Proof of the Factor Theorem for Finite Graphs , 1954, Canadian Journal of Mathematics.

[8]  D. König Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre , 1916 .

[9]  Anna R. Karlin,et al.  A simply exponential upper bound on the maximum number of stable matchings , 2017, STOC.

[10]  Boris G. Pittel,et al.  The Average Number of Stable Matchings , 1989, SIAM J. Discret. Math..

[11]  L. S. Shapley,et al.  College Admissions and the Stability of Marriage , 2013, Am. Math. Mon..

[12]  Robert W. Irving,et al.  The Stable marriage problem - structure and algorithms , 1989, Foundations of computing series.

[13]  Ian Holyer,et al.  The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..

[14]  Vahan V. Mkrtchyan,et al.  On Edge-Disjoint Pairs Of Matchings , 2008, Discret. Math..

[15]  G. Brightwell THE STABLE MARRIAGE PROBLEM: STRUCTURE AND ALGORITHMS (Foundations of Computing) , 1991 .

[16]  L. Shapley,et al.  College Admissions and the Stability of Marriage , 1962 .

[17]  David G. L. Wang,et al.  The number of disjoint perfect matchings in semi-regular graphs , 2017 .

[18]  Robert W. Irving,et al.  The Complexity of Counting Stable Marriages , 1986, SIAM J. Comput..