Crystal plasticity-based forming limit prediction for non-cubic metals: Application to Mg alloy AZ31B

Abstract A viscoplastic crystal plasticity model is incorporated within the Marciniak–Kuczynski (M–K) approach for forming limit curve prediction. The approach allows for the incorporation of crystallographic texture-induced anisotropy and the evolution of the same. The effects of mechanical twinning on the plastic response and texture evolution are also incorporated. Grain-level constitutive parameters describing the temperature dependent behavior of hexagonal close packed Mg alloy, AZ31B, sheets at discrete temperatures are used as a first application of the model. A trade-off between significant strain hardening behavior at lower temperatures (∼150 °C), and significant strain rate hardening at higher temperatures (∼200 °C) lead to similarities in the predicted forming limits. The actual formability of this alloy depends strongly on temperature within this range, and this distinction with the current modeling is related to more localized instability-based failure mechanisms at the lower temperatures than is assumed in the M–K approach. It is shown that the strain path dependence in the strain hardening response is significant and that it influences the forming limits in a predictable way. For broader applicability, a means of incorporating dynamic recrystallization into the crystal plasticity model is required.

[1]  A. P. Karafillis,et al.  A general anisotropic yield criterion using bounds and a transformation weighting tensor , 1993 .

[2]  M. Mabuchi,et al.  Press formability of a rolled AZ31 Mg alloy sheet with controlled texture , 2006 .

[3]  Y. Miyashita,et al.  Effects of Mn content and texture on fatigue properties of as-cast and extruded AZ61 magnesium alloys , 2006 .

[4]  A. Molinari,et al.  Tuning a self consistent viscoplastic model by finite element results—I. Modeling , 1994 .

[5]  F. Barlat,et al.  Yield function development for aluminum alloy sheets , 1997 .

[6]  R. H. Wagoner,et al.  Formability of a more randomly textured magnesium alloy sheet: Application of an improved warm sheet formability test , 2010 .

[7]  K. Inal,et al.  Forming limit comparisons for FCC and BCC sheets , 2005 .

[8]  Z. Marciniak,et al.  Limit strains in the processes of stretch-forming sheet metal , 1967 .

[9]  U. F. Kocks,et al.  Physics and phenomenology of strain hardening: the FCC case , 2003 .

[10]  C. M. Wayman,et al.  Shape-Memory Materials , 2018 .

[11]  Yongnam Kwon,et al.  Experimental and analytical studies for forming limit of AZ31 alloy on warm sheet metal forming , 2007 .

[12]  Forming limit predictions with the perturbation method using stress potential functions of polycrystal viscoplasticity , 1996 .

[13]  R. Hill A theory of the yielding and plastic flow of anisotropic metals , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[14]  F. Roters,et al.  A constitutive model for fcc single crystals based on dislocation densities and its application to uniaxial compression of aluminium single crystals , 2004 .

[15]  S. Kalidindi Incorporation of deformation twinning in crystal plasticity models , 1998 .

[16]  R. Asaro,et al.  Overview no. 42 Texture development and strain hardening in rate dependent polycrystals , 1985 .

[17]  Kenneth W. Neale,et al.  Predictions of forming limit diagrams using a rate-sensitive crystal plasticity model , 1995 .

[18]  J. Stohr,et al.  Etude en microscopie electronique du glissement pyramidal {1122} 〈1123〉 dans le magnesium , 1972 .

[19]  S. Agnew,et al.  Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B , 2005 .

[20]  D. Tortorelli,et al.  A polycrystal plasticity model based on the mechanical threshold , 2002 .

[21]  H. Conrad,et al.  Effect of temperature on the flow stress and strain-hardening coefficient of magnesium single crystals , 1957 .

[22]  J. Embury,et al.  Study of the mechanical properties of Mg-7.7at.% Al by in-situ neutron diffraction , 1999 .

[23]  Hitoshi Fujimoto,et al.  Modelling on flow stress of Mg–Al–Zn alloys at elevated temperatures , 1998 .

[24]  T. Langdon,et al.  Deformation mechanisms in h.c.p. metals at elevated temperatures—II. Creep behavior of a Mg-0.8% Al solid solution alloy , 1982 .

[25]  R. Hill Theoretical plasticity of textured aggregates , 1979, Mathematical Proceedings of the Cambridge Philosophical Society.

[26]  Z. Marciniak,et al.  Influence of the plastic properties of a material on the forming limit diagram for sheet metal in tension , 1973 .

[27]  E. van der Giessen,et al.  On crystal plasticity FLD analysis , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[28]  Ricardo A. Lebensohn,et al.  A model for texture development dominated by deformation twinning: Application to zirconium alloys , 1991 .

[29]  A. P. Karafillis,et al.  Prediction of localized thinning in sheet metal using a general anisotropic yield criterion , 2000 .

[30]  C. Tomé,et al.  Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y , 2001 .

[31]  F. Barlat,et al.  A six-component yield function for anisotropic materials , 1991 .

[32]  M. Barnett A taylor model based description of the proof stress of magnesium AZ31 during hot working , 2003 .

[33]  R. Reed-hill,et al.  Deformation of magnesium single crystals by nonbasal slip , 1957 .

[34]  J. Embury,et al.  The transformation of slip dislocations during twinning of copper-aluminum alloy crystals. , 1997 .

[35]  A. Couret,et al.  An in situ study of prismatic glide in magnesium—I. The rate controlling mechanism , 1985 .

[36]  Siegfried S. Hecker,et al.  Formability of Aluminum Alloy Sheets , 1975 .

[37]  S. Nemat-Nasser,et al.  A physically-based constitutive model for BCC crystals with application to polycrystalline tantalum , 1998 .

[38]  M. Ashby Overview No. 80: On the engineering properties of materials , 1989 .

[39]  M. Barnett Influence of deformation conditions and texture on the high temperature flow stress of magnesium AZ31 , 2001 .

[40]  U. F. Kocks Thermodynamics and kinetics of slip , 1975 .

[41]  S. Agnew,et al.  The texture and anisotropy of magnesium–zinc–rare earth alloy sheets , 2007 .

[42]  R. Hill,et al.  On discontinuous plastic states, with special reference to localized necking in thin sheets , 1952 .

[43]  C. Tomé,et al.  Internal strain and texture evolution during deformation twinning in magnesium , 2005 .

[44]  S. Sriram,et al.  Development of OSU formability test and OSU friction test , 1994 .

[45]  S. P. Keeler Plastic instability and fracture in sheets stretched over rigid punches , 1961 .

[46]  F. Barlat,et al.  Yielding description for solution strengthened aluminum alloys , 1997 .

[47]  M. Sugamata,et al.  Anisotropy and Non-Uniformity in Plastic Behavior of AZ31 Magnesium Alloy Plates , 2003 .

[48]  On the role of texture development in the forming limits of sheet metals , 1996 .

[49]  M. Barnett Twinning and the ductility of magnesium alloys Part I: “Tension” twins , 2007 .

[50]  S. Agnew,et al.  A Mechanistic Understanding of the Formability of Magnesium: Examining the Role of Temperature on the Deformation Mechanisms , 2003 .

[51]  S. Agnew,et al.  Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy AZ31B sheet , 2007 .