Performance analysis of IEEE 802.15.4 and ZigBee for large-scale wireless sensor network applications

This paper analyses the performance of IEEE 802.15.4 Low-Rate Wireless Personal Area Network (LR-WPAN) in a large-scale Wireless Sensor Network (WSN) application. To minimize the energy consumption of the entire network and to allow adequate network coverage, IEEE 802.15.4 peer-to-peer topology is selected, and configured to a beacon-enabled cluster-tree structure. The analysis consists of models for CSMA-CA mechanism and MAC operations specified by IEEE 802.15.4. Network layer operations in a cluster-tree network specified by ZigBee are included in the analysis. For realistic results, power consumption measurements on an IEEE 802.15.4 evaluation board are also included. The performances of a device and a coordinator are analyzed in terms of power consumption and goodput. The results are verified with simulations using WIreless SEnsor NEtwork Simulator (WISENES). The results depict that the minimum device power consumption is as low as 73 μW, when beacon interval is 3.93 s, and data are transmitted at 4 min intervals. Coordinator power consumption and goodput with 15.36 ms CAP duration and 3.93 s beacon interval are around 370 μW and 34 bits/s

[1]  William G. Scanlon,et al.  Analysis of the performance of IEEE 802.15.4 for medical sensor body area networking , 2004, 2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004..

[2]  Shiann-Tsong Sheu,et al.  Grouping strategy for solving hidden node problem in IEEE 802.15.4 LR-WPAN , 2005, First International Conference on Wireless Internet (WICON'05).

[3]  Timo Hämäläinen,et al.  High Abstraction Level Design and Implementation Framework for Wireless Sensor Networks , 2005, SAMOS.

[4]  Itu-T Specification and Description Language (SDL) , 1999 .

[5]  Voon Chin Phua,et al.  Wireless lan medium access control (mac) and physical layer (phy) specifications , 1999 .

[6]  Bhaskar Krishnamachari,et al.  Performance evaluation of the IEEE 802.15.4 MAC for low-rate low-power wireless networks , 2004, IEEE International Conference on Performance, Computing, and Communications, 2004.

[7]  Rudy Lauwereins,et al.  Design, Automation, and Test in Europe , 2008 .

[8]  Yu-Chee Tseng,et al.  Adaptive approaches to relieving broadcast storms in a wireless multihop mobile ad hoc network , 2001, Proceedings 21st International Conference on Distributed Computing Systems.

[9]  K. K. Sandhu,et al.  Specification and description language (SDL) , 1992 .

[10]  Denis C. Daly,et al.  Energy efficiency of the IEEE 802.15.4 standard in dense wireless microsensor networks: modeling and improvement perspectives , 2005, Design, Automation and Test in Europe.

[11]  Jose A. Gutierrez,et al.  Low-Rate Wireless Personal Area Networks: Enabling Wireless Sensors with IEEE 802.15.4 , 2003 .