Protein folding in the cell envelope of Escherichia coli

While the entire proteome is synthesized on cytoplasmic ribosomes, almost half associates with, localizes in or crosses the bacterial cell envelope. In Escherichia coli a variety of mechanisms are important for taking these polypeptides into or across the plasma membrane, maintaining them in soluble form, trafficking them to their correct cell envelope locations and then folding them into the right structures. The fidelity of these processes must be maintained under various environmental conditions including during stress; if this fails, proteases are called in to degrade mislocalized or aggregated proteins. Various soluble, diffusible chaperones (acting as holdases, foldases or pilotins) and folding catalysts are also utilized to restore proteostasis. These responses can be general, dealing with multiple polypeptides, with functional overlaps and operating within redundant networks. Other chaperones are specialized factors, dealing only with a few exported proteins. Several complex machineries have evolved to deal with binding to, integration in and crossing of the outer membrane. This complex protein network is responsible for fundamental cellular processes such as cell wall biogenesis; cell division; the export, uptake and degradation of molecules; and resistance against exogenous toxic factors. The underlying processes, contributing to our fundamental understanding of proteostasis, are a treasure trove for the development of novel antibiotics, biopharmaceuticals and vaccines.

[1]  Shruti Mittal,et al.  Macromolecular crowding: Macromolecules friend or foe. , 2015, Biochimica et biophysica acta.

[2]  Martin A. Schärer,et al.  Quality control of disulfide bond formation in pilus subunits by the chaperone FimC. , 2012, Nature chemical biology.

[3]  P. Tompa,et al.  Intrinsically disordered proteins undergo and assist folding transitions in the proteome. , 2013, Archives of biochemistry and biophysics.

[4]  U. Henning,et al.  Aperiplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins , 1996 .

[5]  L. McIntosh,et al.  A protein export pathway involving Escherichia coli porins. , 2012, Structure.

[6]  J. Wall,et al.  Use of folding modulators to improve heterologous protein production in Escherichia coli , 2009, Microbial cell factories.

[7]  Björn M. Burmann,et al.  Conformation and dynamics of the periplasmic membrane-protein–chaperone complexes OmpX–Skp and tOmpA–Skp , 2013, Nature Structural &Molecular Biology.

[8]  Guido Grandi,et al.  Bacterial surface proteins and vaccines , 2010, F1000 biology reports.

[9]  J. Betton,et al.  The Periplasmic Folding of a Cysteineless Autotransporter Passenger Domain Interferes with Its Outer Membrane Translocation , 2006, Journal of bacteriology.

[10]  M. Rebroš,et al.  Biocatalysis with immobilized Escherichia coli , 2013, Applied Microbiology and Biotechnology.

[11]  M. R. O'Brian,et al.  Control of DegP-Dependent Degradation of c-Type Cytochromes by Heme and the Cytochrome c Maturation System in Escherichia coli , 2007, Journal of bacteriology.

[12]  Antonio Varriale,et al.  The role of calcium in the conformational dynamics and thermal stability of the D‐galactose/D‐glucose‐binding protein from Escherichia coli , 2005, Proteins.

[13]  Wilbert Bitter,et al.  Type VII secretion — mycobacteria show the way , 2007, Nature Reviews Microbiology.

[14]  Gary Walsh,et al.  Biopharmaceutical benchmarks 2014 , 2014, Nature Biotechnology.

[15]  D. Baker,et al.  Structural and energetic basis of folded protein transport by the FimD usher , 2013, Nature.

[16]  Wei Wang,et al.  Molecular simulations of metal-coupled protein folding. , 2015, Current opinion in structural biology.

[17]  M. Chami,et al.  Lipids assist the membrane insertion of a BAM-independent outer membrane protein , 2015, Scientific Reports.

[18]  T. Silhavy,et al.  Role for Skp in LptD Assembly in Escherichia coli , 2013, Journal of bacteriology.

[19]  J. Beckwith The Sec-dependent pathway. , 2013, Research in microbiology.

[20]  Christina M Chisholm,et al.  A Non-classical Assembly Pathway of Escherichia coli Pore-forming Toxin Cytolysin A , 2013, The Journal of Biological Chemistry.

[21]  Dennis Gessmann,et al.  Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA , 2014, Proceedings of the National Academy of Sciences.

[22]  C. Kung,et al.  Feeling the hidden mechanical forces in lipid bilayer is an original sense , 2014, Proceedings of the National Academy of Sciences.

[23]  U. Jakob,et al.  Beyond Transcription—New Mechanisms for the Regulation of Molecular Chaperones , 2004, Critical reviews in biochemistry and molecular biology.

[24]  N. S. Bhavesh,et al.  Cloning, purification, crystallization and preliminary X-ray diffraction studies of Escherichia coli PapD-like protein (EcpD). , 2012, Acta crystallographica. Section F, Structural biology and crystallization communications.

[25]  O. Francetic,et al.  Type II secretion system: a magic beanstalk or a protein escalator. , 2014, Biochimica et biophysica acta.

[26]  Miroslaw Cygler,et al.  Genetic selection designed to stabilize proteins uncovers a chaperone called Spy , 2011, Nature Structural &Molecular Biology.

[27]  Matthias Müller,et al.  Protein translocation across the inner membrane of Gram-negative bacteria: the Sec and Tat dependent protein transport pathways. , 2013, Research in microbiology.

[28]  D. Kahne,et al.  Reconstitution of Outer Membrane Protein Assembly from Purified Components , 2010, Science.

[29]  K. Walldén,et al.  Type IV secretion systems: versatility and diversity in function , 2010, Cellular microbiology.

[30]  R. Jakob,et al.  The prolyl isomerase domain of PpiD from Escherichia coli shows a parvulin fold but is devoid of catalytic activity , 2010, Protein science : a publication of the Protein Society.

[31]  Matthew R Chapman,et al.  Curli biogenesis and function. , 2006, Annual review of microbiology.

[32]  Y. Furukawa,et al.  A Primary Role for Disulfide Formation in the Productive Folding of Prokaryotic Cu,Zn-superoxide Dismutase* , 2014, The Journal of Biological Chemistry.

[33]  Y. J. Sun,et al.  The structure of glutamine-binding protein complexed with glutamine at 1.94 A resolution: comparisons with other amino acid binding proteins. , 1998, Journal of molecular biology.

[34]  Björn M. Burmann,et al.  Impact of holdase chaperones Skp and SurA on the folding of β-barrel outer-membrane proteins , 2015, Nature Structural &Molecular Biology.

[35]  E. Redwan,et al.  Production of Biopharmaceuticals in E. coli: Current Scenario and Future Perspectives. , 2015, Journal of microbiology and biotechnology.

[36]  S. Karamanou,et al.  Breaking on through to the Other Side: Protein Export through the Bacterial Sec System , 2022 .

[37]  A. Plückthun,et al.  Selection for a periplasmic factor improving phage display and functional periplasmic expression , 1998, Nature Biotechnology.

[38]  P. Delepelaire Type I secretion in gram-negative bacteria. , 2004, Biochimica et biophysica acta.

[39]  Tao Wang,et al.  Fiber Formation across the Bacterial Outer Membrane by the Chaperone/Usher Pathway , 2008, Cell.

[40]  T. Knowles,et al.  A novel pathway for outer membrane protein biogenesis in Gram‐negative bacteria , 2015, Molecular microbiology.

[41]  J. Pinkner,et al.  The E. coli CsgB nucleator of curli assembles to β-sheet oligomers that alter the CsgA fibrillization mechanism , 2012, Proceedings of the National Academy of Sciences.

[42]  M. Woodside,et al.  Protein misfolding occurs by slow diffusion across multiple barriers in a rough energy landscape , 2015, Proceedings of the National Academy of Sciences.

[43]  Conrad Bessant,et al.  Protein-folding location can regulate manganese-binding versus copper- or zinc-binding , 2008, Nature.

[44]  V. Braun,et al.  Crystal Structure of Colicin M, a Novel Phosphatase Specifically Imported by Escherichia coli> , 2008, Journal of Biological Chemistry.

[45]  V. Uversky Unusual biophysics of intrinsically disordered proteins. , 2013, Biochimica et biophysica acta.

[46]  Ivano Bertini,et al.  Solution structure of Apo Cu,Zn superoxide dismutase: role of metal ions in protein folding. , 2003, Biochemistry.

[47]  A. Pugsley,et al.  Sorting of an integral outer membrane protein via the lipoprotein‐specific Lol pathway and a dedicated lipoprotein pilotin , 2011, Molecular microbiology.

[48]  Ross E Dalbey,et al.  The membrane insertase YidC. , 2014, Biochimica et biophysica acta.

[49]  Titus M. Franzmann,et al.  Protein refolding by pH-triggered chaperone binding and release , 2009, Proceedings of the National Academy of Sciences.

[50]  H. Saibil,et al.  Structural basis for the regulated protease and chaperone function of DegP , 2008, Nature.

[51]  J. Bowie Solving the membrane protein folding problem , 2005, Nature.

[52]  S. Howorka,et al.  Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG , 2014, Nature.

[53]  Carol V. Robinson,et al.  Intrinsically Disordered Protein Threads Through the Bacterial Outer-Membrane Porin OmpF , 2013, Science.

[54]  T. Lithgow,et al.  Reconstitution of a nanomachine driving the assembly of proteins into bacterial outer membranes , 2014, Nature Communications.

[55]  Dennis Gessmann,et al.  Membrane protein thermodynamic stability may serve as the energy sink for sorting in the periplasm , 2013, Proceedings of the National Academy of Sciences.

[56]  D. Mckay,et al.  The Periplasmic Molecular Chaperone Protein SurA Binds a Peptide Motif That Is Characteristic of Integral Outer Membrane Proteins* , 2003, Journal of Biological Chemistry.

[57]  A. Delcour,et al.  Folding and trimerization of signal sequence-less mature TolC in the cytoplasm of Escherichia coli , 2009, Microbiology.

[58]  H. Bernstein Looks can be deceiving: recent insights into the mechanism of protein secretion by the autotransporter pathway , 2015, Molecular microbiology.

[59]  A. Görg,et al.  Identification of potential substrate proteins for the periplasmic Escherichia coli chaperone Skp , 2008, Proteomics.

[60]  Joan L. Slonczewski,et al.  pH of the Cytoplasm and Periplasm of Escherichia coli: Rapid Measurement by Green Fluorescent Protein Fluorimetry , 2007, Journal of bacteriology.

[61]  A. Plückthun,et al.  The Periplasmic Escherichia coli Peptidylprolyl cis,trans-Isomerase FkpA , 2000, The Journal of Biological Chemistry.

[62]  Shoji Takada,et al.  How Co-translational Folding of Multi-domain Protein Is Affected by Elongation Schedule: Molecular Simulations , 2015, PLoS Comput. Biol..

[63]  D. Linke,et al.  Type V secretion: mechanism(s) of autotransport through the bacterial outer membrane , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[64]  C. Blanchet,et al.  Cofactor effects on the protein folding reaction: Acceleration of α‐lactalbumin refolding by metal ions , 2006, Protein science : a publication of the Protein Society.

[65]  S. Buchanan,et al.  The β-barrel membrane protein insertase machinery from Gram-negative bacteria. , 2015, Current opinion in structural biology.

[66]  M. Stumpf,et al.  Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. , 2010, FEMS microbiology reviews.

[67]  A. M. Stanley,et al.  β-Barrel Proteins That Reside in the Escherichia coli Outer Membrane in Vivo Demonstrate Varied Folding Behavior in Vitro* , 2008, Journal of Biological Chemistry.

[68]  R. Misra,et al.  Assembly of TolC, a Structurally Unique and Multifunctional Outer Membrane Protein of Escherichia coli K-12 , 2003, Journal of bacteriology.

[69]  Georgia Orfanoudaki,et al.  Proteome-wide Subcellular Topologies of E. coli Polypeptides Database (STEPdb)* , 2014, Molecular & Cellular Proteomics.

[70]  M. Ehrmann,et al.  A Temperature-Dependent Switch from Chaperone to Protease in a Widely Conserved Heat Shock Protein , 1999, Cell.

[71]  Phillip J. Stansfeld,et al.  Structural basis of outer membrane protein insertion by the BAM complex , 2016, Nature.

[72]  S. Zakharov,et al.  Pathways of colicin import: utilization of BtuB, OmpF porin and the TolC drug-export protein. , 2012, Biochemical Society transactions.

[73]  V. Braun,et al.  Periplasmic chaperone FkpA is essential for imported colicin M toxicity , 2008, Molecular microbiology.

[74]  J. Kleinschmidt,et al.  Membrane protein folding on the example of outer membrane protein A of Escherichia coli , 2003, Cellular and Molecular Life Sciences CMLS.

[75]  Han Remaut,et al.  Bacterial amyloid formation: structural insights into curli biogensis. , 2015, Trends in microbiology.

[76]  J. Choi,et al.  Secretory and extracellular production of recombinant proteins using Escherichia coli , 2004, Applied Microbiology and Biotechnology.

[77]  Sri H. Ramarathinam,et al.  Discovery of an archetypal protein transport system in bacterial outer membranes , 2012, Nature Structural &Molecular Biology.

[78]  Min Lu,et al.  Core structure of the outer membrane lipoprotein from Escherichia coli at 1.9 A resolution. , 2000, Journal of molecular biology.

[79]  S. Shan,et al.  Co-translational protein targeting to the bacterial membrane. , 2014, Biochimica et biophysica acta.

[80]  Effect of crowding by Ficolls on OmpA and OmpT refolding and membrane insertion , 2013, Protein science : a publication of the Protein Society.

[81]  S. Karamanou,et al.  Rapid label‐free quantitative analysis of the E. coli BL21(DE3) inner membrane proteome , 2016, Proteomics.

[82]  T. Nambu,et al.  The Salmonella FlgA protein, a putativeve periplasmic chaperone essential for flagellar P ring formation. , 2000, Microbiology.

[83]  I. Henderson,et al.  Roles of Periplasmic Chaperone Proteins in the Biogenesis of Serine Protease Autotransporters of Enterobacteriaceae , 2009, Journal of bacteriology.

[84]  R. Milo What is the total number of protein molecules per cell volume? A call to rethink some published values , 2013, BioEssays : news and reviews in molecular, cellular and developmental biology.

[85]  T. Raivio,et al.  A third envelope stress signal transduction pathway in Escherichia coli , 2002, Molecular microbiology.

[86]  Xinmiao Fu,et al.  DegP primarily functions as a protease for the biogenesis of β‐barrel outer membrane proteins in the Gram‐negative bacterium Escherichia coli , 2014, The FEBS journal.

[87]  Roshani Patel,et al.  Protein transport by the bacterial Tat pathway. , 2014, Biochimica et biophysica acta.

[88]  M. Prevost,et al.  Escherichia coli K-12 possesses multiple cryptic but functional chaperone-usher fimbriae with distinct surface specificities. , 2010, Environmental microbiology.

[89]  S. Buchanan,et al.  Outer membrane protein biogenesis in Gram-negative bacteria , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[90]  G. Waksman,et al.  The molecular dissection of the chaperone-usher pathway. , 2014, Biochimica et biophysica acta.

[91]  S. Buchanan,et al.  Lateral opening and exit pore formation are required for BamA function. , 2014, Structure.

[92]  Sheena E. Radford,et al.  Mechanistic studies of the biogenesis and folding of outer membrane proteins in vitro and in vivo: What have we learned to date? , 2014, Archives of biochemistry and biophysics.

[93]  Harald Kolmar,et al.  Decorating microbes: surface display of proteins on Escherichia coli. , 2011, Trends in biotechnology.

[94]  T. Silhavy,et al.  The bacterial cell envelope. , 2010, Cold Spring Harbor perspectives in biology.

[95]  Hajime Tokuda,et al.  Lipoprotein sorting in bacteria. , 2011, Annual review of microbiology.

[96]  Takehiro Suzuki,et al.  Protease homolog BepA (YfgC) promotes assembly and degradation of β-barrel membrane proteins in Escherichia coli , 2013, Proceedings of the National Academy of Sciences.

[97]  R. Huber,et al.  Protein quality control in the bacterial periplasm. , 2011, Annual review of microbiology.

[98]  A. Economou,et al.  Type III Secretion: Building and Operating a Remarkable Nanomachine. , 2016, Trends in biochemical sciences.

[99]  D. Missiakas,et al.  Characterization of the Escherichia coli s E Regulon * , 2001 .

[100]  U. Henning,et al.  A periplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins. , 1996, Molecular microbiology.

[101]  Björn M. Burmann,et al.  The structural basis of autotransporter translocation by TamA , 2013, Nature Structural &Molecular Biology.

[102]  M. Kuehn,et al.  Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions , 2015, Nature Reviews Microbiology.

[103]  S. Coulthurst,et al.  Aim, Load, Fire: The Type VI Secretion System, a Bacterial Nanoweapon. , 2016, Trends in microbiology.

[104]  Huan‐Xiang Zhou,et al.  Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. , 2008, Annual review of biophysics.

[105]  S. Imbeaud,et al.  Global Analysis of Extracytoplasmic Stress Signaling in Escherichia coli , 2009, PLoS genetics.

[106]  K. G. Fleming,et al.  Deuterium Labeling Together with Contrast Variation Small-Angle Neutron Scattering Suggests How Skp Captures and Releases Unfolded Outer Membrane Proteins. , 2016, Methods in enzymology.

[107]  Matthias Müller,et al.  The periplasmic chaperone PpiD interacts with secretory proteins exiting from the SecYEG translocon. , 2008, Biochemistry.

[108]  O. Holst,et al.  The periplasmic chaperone Skp facilitates targeting, insertion, and folding of OmpA into lipid membranes with a negative membrane surface potential. , 2009, Biochemistry.

[109]  J. Anné,et al.  Antibiotic targeting of the bacterial secretory pathway. , 2014, Biochimica et biophysica acta.

[110]  A. Karshikoff,et al.  Electrostatic contribution to the thermodynamic and kinetic stability of the homotrimeric coiled coil Lpp‐56: A computational study , 2008, Proteins.

[111]  H. Koch,et al.  Dynamic Interaction of the Sec Translocon with the Chaperone PpiD* , 2014, The Journal of Biological Chemistry.

[112]  Koreaki Ito,et al.  Folding and assembly of bacterial alkaline phosphatase in vitro and in vivo. , 1993, The Journal of biological chemistry.

[113]  T. Raivio Everything old is new again: an update on current research on the Cpx envelope stress response. , 2014, Biochimica et biophysica acta.

[114]  Tim Clausen,et al.  Molecular Adaptation of the DegQ Protease to Exert Protein Quality Control in the Bacterial Cell Envelope* , 2011, The Journal of Biological Chemistry.

[115]  J. Fitter,et al.  The perspectives of studying multi-domain protein folding , 2009, Cellular and Molecular Life Sciences.

[116]  S. Karamanou,et al.  The Escherichia coli Peripheral Inner Membrane Proteome* , 2012, Molecular & Cellular Proteomics.

[117]  D. Belin,et al.  Expression of the endogenous type II secretion pathway in Escherichia coli leads to chitinase secretion , 2000, The EMBO journal.

[118]  D. Daley,et al.  Identification of Putative Substrates for the Periplasmic Chaperone YfgM in Escherichia coli Using Quantitative Proteomics* , 2014, Molecular & Cellular Proteomics.

[119]  T. Silhavy,et al.  Periplasmic Peptidyl Prolyl cis-trans Isomerases Are Not Essential for Viability, but SurA Is Required for Pilus Biogenesis in Escherichia coli , 2005, Journal of bacteriology.

[120]  T Surrey,et al.  Folding and membrane insertion of the trimeric beta-barrel protein OmpF. , 1996, Biochemistry.

[121]  Agneta Richter-Dahlfors,et al.  Vesicle-Mediated Export and Assembly of Pore-Forming Oligomers of the Enterobacterial ClyA Cytotoxin , 2003, Cell.

[122]  G. Festel,et al.  Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application , 2014, Applied Microbiology and Biotechnology.

[123]  P. Clark,et al.  Autotransporters: The Cellular Environment Reshapes a Folding Mechanism to Promote Protein Transport. , 2012, The journal of physical chemistry letters.

[124]  I. Henderson,et al.  The Essential β-Barrel Assembly Machinery Complex Components BamD and BamA Are Required for Autotransporter Biogenesis , 2011, Journal of bacteriology.

[125]  T. Raivio,et al.  Characterization of the Cpx Regulon in Escherichia coli Strain MC4100 , 2008, Journal of bacteriology.

[126]  H. Bernstein,et al.  Stepwise Folding of an Autotransporter Passenger Domain Is Not Essential for Its Secretion* , 2013, The Journal of Biological Chemistry.

[127]  U. Jakob,et al.  Structural plasticity of an acid-activated chaperone allows promiscuous substrate binding , 2009, Proceedings of the National Academy of Sciences.

[128]  Frank Sargent,et al.  Sequence analysis of bacterial redox enzyme maturation proteins (REMPs). , 2004, Canadian journal of microbiology.

[129]  Christian González-Rivera,et al.  Mechanism and structure of the bacterial type IV secretion systems. , 2014, Biochimica et biophysica acta.

[130]  Yihua Huang,et al.  Structure of the nonameric bacterial amyloid secretion channel , 2014, Proceedings of the National Academy of Sciences.

[131]  J. Tommassen,et al.  Autotransporter secretion: varying on a theme. , 2013, Research in microbiology.

[132]  Michael J Sweredoski,et al.  Novel Proteomic Tools Reveal Essential Roles of SRP and Importance of Proper Membrane Protein Biogenesis* , 2011, Molecular & Cellular Proteomics.

[133]  S. Dramsi,et al.  Covalent attachment of proteins to peptidoglycan. , 2008, FEMS microbiology reviews.

[134]  D. Vertommen,et al.  Detecting Envelope Stress by Monitoring β-Barrel Assembly , 2014, Cell.

[135]  Hammad Naveed,et al.  Predicting weakly stable regions, oligomerization state, and protein–protein interfaces in transmembrane domains of outer membrane proteins , 2009, Proceedings of the National Academy of Sciences.

[136]  Y. Fujita,et al.  SecD is involved in the release of translocated secretory proteins from the cytoplasmic membrane of Escherichia coli. , 1993, The EMBO journal.

[137]  C. Gross,et al.  The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity , 2001, The EMBO journal.

[138]  M. Chapman,et al.  Secretion of curli fibre subunits is mediated by the outer membrane‐localized CsgG protein , 2006, Molecular microbiology.

[139]  F. Saul,et al.  Structural and functional studies of FkpA from Escherichia coli, a cis/trans peptidyl-prolyl isomerase with chaperone activity. , 2004, Journal of molecular biology.

[140]  Y. Gho,et al.  Global proteomic profiling of native outer membrane vesicles derived from Escherichia coli , 2007, Proteomics.

[141]  S. Milles,et al.  Solubilization of Protein Aggregates by the Acid Stress Chaperones HdeA and HdeB* , 2008, Journal of Biological Chemistry.

[142]  S. Radford,et al.  Protein folding occurs while bound to the ATP-independent chaperone Spy , 2015, Nature Structural &Molecular Biology.

[143]  T. Lithgow,et al.  Assembly of the secretion pores GspD, Wza and CsgG into bacterial outer membranes does not require the Omp85 proteins BamA or TamA , 2015, Molecular microbiology.

[144]  S. Smits,et al.  Equilibrium folding of pro-HlyA from Escherichia coli reveals a stable calcium ion dependent folding intermediate. , 2014, Biochimica et biophysica acta.

[145]  J. Armitage,et al.  Type III secretion systems: the bacterial flagellum and the injectisome , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[146]  S. Karamanou,et al.  SecA-mediated targeting and translocation of secretory proteins. , 2014, Biochimica et biophysica acta.

[147]  P. Wittung-Stafshede Role of Cofactors in Protein Folding , 2002 .

[148]  A. Skerra,et al.  A system for concomitant overexpression of four periplasmic folding catalysts to improve secretory protein production in Escherichia coli. , 2006, Protein engineering, design & selection : PEDS.

[149]  H. Tokuda,et al.  Model of mouth-to-mouth transfer of bacterial lipoproteins through inner membrane LolC, periplasmic LolA, and outer membrane LolB , 2009, Proceedings of the National Academy of Sciences.

[150]  J. Collet,et al.  Folding mechanisms of periplasmic proteins. , 2014, Biochimica et biophysica acta.

[151]  A. Filloux,et al.  Type VI secretion and anti-host effectors. , 2016, Current opinion in microbiology.

[152]  Gabriel Waksman,et al.  Secretion systems in Gram-negative bacteria: structural and mechanistic insights , 2015, Nature Reviews Microbiology.

[153]  J. Collet,et al.  Disulfide bond formation in the bacterial periplasm: major achievements and challenges ahead. , 2013, Antioxidants & redox signaling.

[154]  T J Beveridge,et al.  Periplasmic space and the concept of the periplasm. , 1991, Trends in biochemical sciences.

[155]  Alexey G. Murzin,et al.  SCOP2 prototype: a new approach to protein structure mining , 2014, Nucleic Acids Res..

[156]  K. Dill,et al.  From Levinthal to pathways to funnels , 1997, Nature Structural Biology.

[157]  H. Saibil,et al.  Newly folded substrates inside the molecular cage of the HtrA chaperone DegQ , 2011, Nature Structural &Molecular Biology.

[158]  J. Beckwith,et al.  Detecting Folding Intermediates of a Protein as It Passes through the Bacterial Translocation Channel , 2009, Cell.

[159]  H. Bernstein,et al.  Interaction of an autotransporter passenger domain with BamA during its translocation across the bacterial outer membrane , 2009, Proceedings of the National Academy of Sciences.

[160]  Peng R. Chen,et al.  A genetically incorporated crosslinker reveals chaperone cooperation in acid resistance. , 2011, Nature chemical biology.

[161]  M. Gerstein,et al.  Use of Thioredoxin as a Reporter To Identify a Subset of Escherichia coli Signal Sequences That Promote Signal Recognition Particle-Dependent Translocation , 2005, Journal of bacteriology.

[162]  T. Lithgow,et al.  Assembly of β-barrel proteins into bacterial outer membranes. , 2014, Biochimica et biophysica acta.

[163]  Colin Kleanthous,et al.  Swimming against the tide: progress and challenges in our understanding of colicin translocation , 2010, Nature Reviews Microbiology.

[164]  G. Mclendon,et al.  Zinc-dependent protein folding. , 2000, Current opinion in chemical biology.

[165]  K. Riesbeck,et al.  Bacterial outer membrane vesicles in disease and preventive medicine , 2011, Seminars in Immunopathology.

[166]  M. Sousa,et al.  Crystal structure of Skp, a prefoldin-like chaperone that protects soluble and membrane proteins from aggregation. , 2004, Molecular cell.

[167]  Charalampos G. Kalodimos,et al.  Signal peptides are allosteric activators of the protein translocase , 2009, Nature.

[168]  Tae-Young Roh,et al.  Immunization with Escherichia coli Outer Membrane Vesicles Protects Bacteria-Induced Lethality via Th1 and Th17 Cell Responses , 2013, The Journal of Immunology.

[169]  Andreas Bracher,et al.  Molecular chaperones in protein folding and proteostasis , 2011, Nature.

[170]  T. Lithgow,et al.  Assembly of the Type II Secretion System such as Found in Vibrio cholerae Depends on the Novel Pilotin AspS , 2013, PLoS pathogens.

[171]  E. Laskowska,et al.  Characterization of the chaperone-like activity of HtrA (DegP) protein from Escherichia coli under the conditions of heat shock. , 2007, Archives of biochemistry and biophysics.