Dispersion measurements of microstructured fibers using femtosecond laser pulses

We measure the group-velocity dispersion in the range from 700 to 900 nm on three microstructured fibers with different hole sizes but similar ratios of pitch-to-hole diameter. Our results are in good agreement with theoretical simulations based on vector-plane-wave theory. We perform these measurements using a novel pulse-delay technique which utilizes femtosecond laser pulses and a two-photon photodiode and thus can be applied to short samples.

[1]  K. Daikoku,et al.  Direct measurement of wavelength dispersion in optical fibres-difference method , 1978 .

[2]  H. T. Shang,et al.  Chromatic dispersion measurement by white light interferometry on meter-length single-mode optical fiber (A) , 1981 .

[3]  Knight,et al.  Single-Mode Photonic Band Gap Guidance of Light in Air. , 1999, Science.

[4]  D. Richardson,et al.  Modeling large air fraction holey optical fibers , 2000, Journal of Lightwave Technology.

[5]  B. Luther-Davies,et al.  Evaluation of material dispersion in low-loss phosphosilicate-core optical fibres , 1975 .

[6]  J. Knight,et al.  Dispersion compensation using single-material fibers , 1999, IEEE Photonics Technology Letters.

[7]  A. Stentz,et al.  Optical properties of high-delta air silica microstructure optical fibers. , 2000, Optics letters.

[8]  Erich P. Ippen,et al.  Femtosecond time domain measurements of group velocity dispersion in diode lasers at 1.5 mu m , 1992 .

[9]  Hall,et al.  Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis , 2000, Science.

[10]  D. M. Atkin,et al.  All-silica single-mode optical fiber with photonic crystal cladding. , 1996, Optics letters.

[11]  E. Ippen,et al.  Measurement of pulse asymmetry by three-photon-absorption autocorrelation in a GaAsP photodiode. , 1999, Optics letters.

[12]  D J Richardson,et al.  Toward practical holey fiber technology: fabrication, splicing, modeling, and characterization. , 1999, Optics letters.

[13]  M. Hyodo,et al.  Measurement of the chromatic dispersion of an optical fiber by use of a Sagnac interferometer employing asymmetric modulation. , 2000, Optics letters.

[14]  I. Malitson Interspecimen Comparison of the Refractive Index of Fused Silica , 1965 .

[15]  T A Birks,et al.  Group-velocity dispersion in photonic crystal fibers. , 1998, Optics letters.

[16]  P Andrés,et al.  Full-vector analysis of a realistic photonic crystal fiber. , 1999, Optics letters.

[17]  A Bjarklev,et al.  Analysis of air-guiding photonic bandgap fibers. , 2000, Optics letters.

[18]  D. M. Atkin,et al.  Full 2-D photonic bandgaps in silica/air structures , 1995 .

[19]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[20]  Chinlon Lin,et al.  Pulse delay measurements in the zero material dispersion wavelength region for optical fibers. , 1977, Applied optics.

[21]  J. Arriaga,et al.  Anomalous dispersion in photonic crystal fiber , 2000, IEEE Photonics Technology Letters.

[22]  Hall,et al.  Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb , 2000, Physical review letters.

[23]  G. Jacobsen,et al.  Simple dispersion measurment technique with high resolution , 1993 .

[24]  P. Russell,et al.  Endlessly single-mode photonic crystal fiber. , 1997, Optics letters.

[25]  Julian D. C. Jones,et al.  Experimental measurement of group velocity dispersion in photonic crystal fibre , 1999 .

[26]  William J. Wadsworth,et al.  Soliton effects in photonic crystal fibres at 850 nm , 2000 .

[27]  D. Wiersma,et al.  Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode. , 1997, Optics letters.

[28]  Douglas C. Allan,et al.  Photonic Crystal Fibers: Effective-Index and Band-Gap Guidance , 2001 .

[29]  Knight,et al.  Photonic band gap guidance in optical fibers , 1998, Science.

[30]  J. Joannopoulos,et al.  Accurate theoretical analysis of photonic band-gap materials. , 1993, Physical review. B, Condensed matter.

[31]  H. W. Astle,et al.  Low-loss single-material fibers made from pure fused silica , 1974 .

[32]  David J. Richardson,et al.  Holey optical fibers: an efficient modal model , 1999 .

[33]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .