Impacts of local population history and ecology on the evolution of a globally dispersed pathogen

[1]  R. Almeida,et al.  Population structure and adaptation of a bacterial pathogen in California grapevines. , 2020, Environmental microbiology.

[2]  Andreina I. Castillo,et al.  Emergence of a Plant Pathogen in Europe Associated with Multiple Intercontinental Introductions , 2019, Applied and Environmental Microbiology.

[3]  J. V. van Veen,et al.  High-Level Abundances of Methanobacteriales and Syntrophobacterales May Help To Prevent Corrosion of Metal Sheet Piles , 2019, Applied and Environmental Microbiology.

[4]  M. Kalanon,et al.  Uncoupling the Threading and Unfoldase Actions of Plasmodium HSP101 Reveals Differences in Export between Soluble and Insoluble Proteins , 2019, mBio.

[5]  Adam C. Retchless,et al.  Patterns of inter- and intrasubspecific homologous recombination inform eco-evolutionary dynamics of Xylella fastidiosa , 2019, The ISME Journal.

[6]  Adam C. Retchless,et al.  Genomic Diversity and Recombination among Xylella fastidiosa Subspecies , 2019, Applied and Environmental Microbiology.

[7]  D. Boscia,et al.  Xylella fastidiosa in Olive in Apulia: Where We Stand. , 2019, Phytopathology.

[8]  J. Lalucat,et al.  Draft Genome Resources of Two Strains of Xylella fastidiosa XYL1732/17 and XYL2055/17 Isolated from Mallorca Vineyards. , 2019, Phytopathology.

[9]  J. Antón,et al.  Impact of Homologous Recombination on the Evolution of Prokaryotic Core Genomes , 2019, mBio.

[10]  L. Nunney,et al.  An Experimental Test of the Host-Plant Range of Nonrecombinant Strains of North American Xylella fastidiosa subsp. multiplex. , 2019, Phytopathology.

[11]  M. Pautasso,et al.  Update of the Xylella spp. host plant database , 2018, EFSA journal. European Food Safety Authority.

[12]  A. Zeilinger,et al.  Xylella fastidiosa: Insights into an Emerging Plant Pathogen. , 2018, Annual review of phytopathology.

[13]  S. Wingett,et al.  FastQ Screen: A tool for multi-genome mapping and quality control , 2018, F1000Research.

[14]  Simon Andrews,et al.  FastQ Screen: A tool for multi-genome mapping and quality control , 2018, F1000Research.

[15]  PM 7/24 (4) Xylella fastidiosa , 2018, EPPO Bulletin.

[16]  S. Sheppard,et al.  Population genomics of bacterial host adaptation , 2018, Nature Reviews Genetics.

[17]  B. Ingel,et al.  Xylella fastidiosa: an examination of a re-emerging plant pathogen. , 2018, Molecular plant pathology.

[18]  Silvia Angeletti,et al.  Two different Xylella fastidiosa strains circulating in Italy: phylogenetic and evolutionary analyses , 2018 .

[19]  H. Ochman,et al.  Impact of Recombination on the Base Composition of Bacteriaand Archaea , 2017, Molecular biology and evolution.

[20]  P. Cobine,et al.  Natural Competence Rates Are Variable Among Xylella fastidiosa Strains and Homologous Recombination Occurs In Vitro Between Subspecies fastidiosa and multiplex. , 2017, Molecular plant-microbe interactions : MPMI.

[21]  Annalisa Giampetruzzi,et al.  Genome-Wide Analysis Provides Evidence on the Genetic Relatedness of the Emergent Xylella fastidiosa Genotype in Italy to Isolates from Central America. , 2017, Phytopathology.

[22]  P. Ceresini,et al.  Spatial Genetic Structure of Coffee-Associated Xylella fastidiosa Populations Indicates that Cross Infection Does Not Occur with Sympatric Citrus Orchards. , 2017, Phytopathology.

[23]  D. Cornara,et al.  Transmission of Xylella fastidiosa by naturally infected Philaenus spumarius (Hemiptera, Aphrophoridae) to different host plants , 2017 .

[24]  Kai Wang,et al.  Analysis of gene gain and loss in the evolution of predatory bacteria. , 2017, Gene.

[25]  J. Lopes,et al.  Homologous Recombination and Xylella fastidiosa Host-Pathogen Associations in South America. , 2017, Phytopathology.

[26]  Jukka Corander,et al.  Efficient Inference of Recent and Ancestral Recombination within Bacterial Populations , 2016, bioRxiv.

[27]  F. Porcelli,et al.  Spittlebugs as vectors of Xylella fastidiosa in olive orchards in Italy , 2016, Journal of Pest Science.

[28]  Eric P. Nawrocki,et al.  NCBI prokaryotic genome annotation pipeline , 2016, Nucleic acids research.

[29]  Måns Magnusson,et al.  MultiQC: summarize analysis results for multiple tools and samples in a single report , 2016, Bioinform..

[30]  G. Martelli,et al.  Intercepted isolates of Xylella fastidiosa in Europe reveal novel genetic diversity , 2016, European Journal of Plant Pathology.

[31]  D. Crouzillat,et al.  New Coffee Plant-Infecting Xylella fastidiosa Variants Derived via Homologous Recombination , 2015, Applied and Environmental Microbiology.

[32]  R. Almeida,et al.  How Do Plant Diseases Caused by Xylella fastidiosa Emerge? , 2015, Plant disease.

[33]  D. Raoult,et al.  The bacterial pangenome as a new tool for analysing pathogenic bacteria , 2015, New microbes and new infections.

[34]  Andrew J. Page,et al.  Roary: rapid large-scale prokaryote pan genome analysis , 2015, bioRxiv.

[35]  L. R. Nunes,et al.  Comparative genomic analysis of coffee-infecting Xylella fastidiosa strains isolated from Brazil. , 2015, Microbiology.

[36]  T. Burr,et al.  Characterization of the Xylella fastidiosa PD1671 Gene Encoding Degenerate c-di-GMP GGDEF/EAL Domains, and Its Role in the Development of Pierce’s Disease , 2015, PloS one.

[37]  Lorna M. Lopez,et al.  Modulation of Genetic Associations with Serum Urate Levels by Body-Mass-Index in Humans , 2015, PloS one.

[38]  Eric Fleury,et al.  Detailed Contact Data and the Dissemination of Staphylococcus aureus in Hospitals , 2015, PLoS Comput. Biol..

[39]  Daniel J. Wilson,et al.  ClonalFrameML: Efficient Inference of Recombination in Whole Bacterial Genomes , 2015, PLoS Comput. Biol..

[40]  L. Nunney,et al.  The Complex Biogeography of the Plant Pathogen Xylella fastidiosa: Genetic Evidence of Introductions and Subspecific Introgression in Central America , 2014, PloS one.

[41]  Roland Eils,et al.  circlize implements and enhances circular visualization in R , 2014, Bioinform..

[42]  Dongyou Liu Manual of Security Sensitive Microbes and Toxins , 2014 .

[43]  M. Lercher,et al.  PopGenome: An Efficient Swiss Army Knife for Population Genomic Analyses in R , 2014, Molecular biology and evolution.

[44]  M. Scally,et al.  Large-Scale Intersubspecific Recombination in the Plant-Pathogenic Bacterium Xylella fastidiosa Is Associated with the Host Shift to Mulberry , 2014, Applied and Environmental Microbiology.

[45]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[46]  D. Hopkins,et al.  Intersubspecific Recombination in Xylella fastidiosa Strains Native to the United States: Infection of Novel Hosts Associated with an Unsuccessful Invasion , 2013, Applied and Environmental Microbiology.

[47]  Dmitry Antipov,et al.  Assembling Single-Cell Genomes and Mini-Metagenomes From Chimeric MDA Products , 2013, J. Comput. Biol..

[48]  L. Nunney,et al.  Recent Evolutionary Radiation and Host Plant Specialization in the Xylella fastidiosa Subspecies Native to the United States , 2013, Applied and Environmental Microbiology.

[49]  Benjamin J. Keller,et al.  New Susceptibility Loci Associated with Kidney Disease in Type 1 Diabetes , 2012, PLoS genetics.

[50]  G. Salmond,et al.  Top 10 plant pathogenic bacteria in molecular plant pathology. , 2012, Molecular plant pathology.

[51]  O. Berg,et al.  Selection-Driven Gene Loss in Bacteria , 2012, PLoS genetics.

[52]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[53]  L. Nunney,et al.  Detecting Genetic Introgression: High Levels of Intersubspecific Recombination Found in Xylella fastidiosa in Brazil , 2012, Applied and Environmental Microbiology.

[54]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[55]  Luay Nakhleh,et al.  Population genomics in bacteria: a case study of Staphylococcus aureus. , 2012, Molecular biology and evolution.

[56]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[57]  Giovanna Morelli,et al.  Phylogenetic diversity and historical patterns of pandemic spread of Yersinia pestis , 2010, Nature Genetics.

[58]  J. Hartung,et al.  Population Genomic Analysis of a Bacterial Plant Pathogen: Novel Insight into the Origin of Pierce's Disease of Grapevine in the U.S. , 2010, PloS one.

[59]  Ruifu Yang,et al.  Phylogenetic diversity and historical patterns of pandemic spread of Yersinia pestis , 2010, Nature genetics.

[60]  L. Nunney,et al.  Multilocus sequence typing of Xylella fastidiosa causing Pierce's disease and oleander leaf scorch in the United States. , 2010, Phytopathology.

[61]  D. Smith,et al.  First Report of Pierce's Disease of Grape Caused by Xylella fastidiosa in Oklahoma. , 2009, Plant disease.

[62]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[63]  L. Moreira,et al.  Confirmation of Xylella fastidiosa infecting grapes Vitis vinifera in Costa Rica , 2008 .

[64]  C. Schmidt Linking TB and the Environment: An Overlooked Mitigation Strategy , 2008, Environmental health perspectives.

[65]  J. Hartung,et al.  Isolation and molecular characterization of Xylella fastidiosa from coffee plants in Costa Rica , 2008, The Journal of Microbiology.

[66]  C. Chacón-Díaz,et al.  First Report of Xylella fastidiosa in Nerium oleander in Costa Rica. , 2008, Plant disease.

[67]  Montgomery Slatkin,et al.  Linkage disequilibrium — understanding the evolutionary past and mapping the medical future , 2008, Nature Reviews Genetics.

[68]  A. Navarro,et al.  Statistical Power Analysis of Neutrality Tests Under Demographic Expansions, Contractions and Bottlenecks With Recombination , 2008, Genetics.

[69]  R. Almeida,et al.  Genetic Structure and Biology of Xylella fastidiosa Strains Causing Disease in Citrus and Coffee in Brazil , 2008, Applied and Environmental Microbiology.

[70]  Brad T. Sherman,et al.  The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists , 2007, Genome Biology.

[71]  Chenhui Zhang,et al.  Adaptive genic evolution in the Drosophila genomes , 2007, Proceedings of the National Academy of Sciences.

[72]  G. Martin,et al.  Bacterial elicitation and evasion of plant innate immunity , 2006, Nature Reviews Molecular Cell Biology.

[73]  Edwin L. Civerolo,et al.  Genome-based PCR Primers for Specific and Sensitive Detection and Quantification of Xylella fastidiosa , 2006, European Journal of Plant Pathology.

[74]  Diana J L Williams,et al.  The Continuing Challenges of Leprosy , 2006, Clinical Microbiology Reviews.

[75]  M. Blua,et al.  Vector Transmission of Xylella fastidiosa: Applying Fundamental Knowledge to Generate Disease Management Strategies , 2005 .

[76]  M. Scally,et al.  A Multigene Phylogenetic Study of Clonal Diversity and Divergence in North American Strains of the Plant Pathogen Xylella fastidiosa , 2005, Applied and Environmental Microbiology.

[77]  G. Gilbert,et al.  The Evolutionary Ecology of Novel Plant-Pathogen Interactions , 2004 .

[78]  K. Morano,et al.  Indirect Immunofluorescence Microscopy for Direct Detection of Xylella fastidiosa in Xylem Sap , 2004, Current Microbiology.

[79]  M. Aguadé,et al.  DNA variation at the rp49 gene region of Drosophila simulans: evolutionary inferences from an unusual haplotype structure. , 2001, Genetics.

[80]  J. Hacker,et al.  Ecological fitness, genomic islands and bacterial pathogenicity , 2001, EMBO reports.

[81]  J K Kelly,et al.  A test of neutrality based on interlocus associations. , 1997, Genetics.

[82]  D. Dykhuizen,et al.  Clonal divergence in Escherichia coli as a result of recombination, not mutation. , 1994, Science.

[83]  F. Tajima Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. , 1989, Genetics.

[84]  William J. French,et al.  Axenic culture of the bacteria associated with phony disease of peach and plum leaf scald , 1981, Current Microbiology.

[85]  G. A. Watterson On the number of segregating sites in genetical models without recombination. , 1975, Theoretical population biology.

[86]  W. G. Hill,et al.  The effect of linkage on limits to artificial selection. , 1966, Genetical research.

[87]  Luis Felipe Arauz Cavallini EL CAFÉ EN COSTA RICA. GRAN MODELADOR DEL COSTARRICENSE. Jiménez C. Álvaro. 2013. Editorial Universidad de Costa Rica. San José, Costa Rica. 692 p. , 2013 .

[88]  Ira M. Hall,et al.  BEDTools: a flexible suite of utilities for comparing genomic features , 2010, Bioinform..

[89]  Aaron E. Darling,et al.  Reordering contigs of draft genomes using the Mauve Aligner , 2009, Bioinform..

[90]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[91]  Robert E. Stall,et al.  Development of a polymerase chain reaction protocol for detection of Xylella fastidiosa in plant tissue. , 1994 .