An improved simulated annealing algorithm for bandwidth minimization

In this paper, a simulated annealing algorithm is presented for the Bandwidth Minimization Problem for Graphs. This algorithm is based on three distinguished features including an original internal representation of solutions, a highly discriminating evaluation function and an effective neighborhood. The algorithm is evaluated on a set of 113 well-known benchmark instances of the literature and compared with several state-of-the-art algorithms, showing improvements of some previous best results.

[1]  Fred W. Glover,et al.  Ejection Chains, Reference Structures and Alternating Path Methods for Traveling Salesman Problems , 1996, Discret. Appl. Math..

[2]  Norman E. Gibbs,et al.  The bandwidth problem for graphs and matrices - a survey , 1982, J. Graph Theory.

[3]  Bruce E. Hajek,et al.  Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..

[4]  Lawren Smithline Bandwidth of the complete k-ary tree , 1995, Discret. Math..

[5]  Huang,et al.  AN EFFICIENT GENERAL COOLING SCHEDULE FOR SIMULATED ANNEALING , 1986 .

[6]  Christos H. Papadimitriou,et al.  The NP-Completeness of the bandwidth minimization problem , 1976, Computing.

[7]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[8]  Andrew Lim,et al.  Integrated Genetic Algorithm with Hill Climbing for Bandwidth Minimization Problem , 2003, GECCO.

[9]  Giovanni Manzini,et al.  Finding Exact Solutions to the Bandwidth Minimization Problem , 1999, Computing.

[10]  José Torres-Jiménez,et al.  A New Measure for the Bandwidth Minimization Problem , 2000, IBERAMIA-SBIA.

[11]  José Torres-Jiménez,et al.  An Improved Evaluation Function for the Bandwidth Minimization Problem , 2004, PPSN.

[12]  Dieter Kratsch,et al.  Finding the Minimum Bandwidth of an Interval Graphs , 1987, Inf. Comput..

[13]  Éric D. Taillard,et al.  Mic2003: the Fifth Metaheuristics International Conference a Statistical Test for Comparing Success Rateséric , 2022 .

[14]  William G. Poole,et al.  An algorithm for reducing the bandwidth and profile of a sparse matrix , 1976 .

[15]  Eitan M. Gurari,et al.  Improved Dynamic Programming Algorithms for Bandwidth Minimization and the MinCut Linear Arrangement Problem , 1984, J. Algorithms.

[16]  E. Cuthill,et al.  Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.

[17]  James P. Cohoon,et al.  A fast method for generalized starting temperature determination in homogeneous two-stage simulated annealing systems , 1999, Comput. Oper. Res..

[18]  Isaac Plana,et al.  GRASP and path relinking for the matrix bandwidth minimization , 2004, Eur. J. Oper. Res..

[19]  V. Rich Personal communication , 1989, Nature.

[20]  L. H. Harper Optimal Assignments of Numbers to Vertices , 1964 .

[21]  César Rego,et al.  Subgraph ejection chains and tabu search for the crew scheduling problem , 1999, J. Oper. Res. Soc..

[22]  Luciano Tarricone,et al.  A new matrix bandwidth reduction algorithm , 1998, Oper. Res. Lett..

[23]  Fred W. Glover,et al.  Reducing the bandwidth of a sparse matrix with tabu search , 2001, Eur. J. Oper. Res..

[24]  Emile H. L. Aarts,et al.  A new polynomial time cooling schedule , 1985 .

[25]  R. K. Livesley,et al.  The Analysis of Large Structural Systems , 1960, Comput. J..

[26]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[27]  David S. Johnson,et al.  COMPLEXITY RESULTS FOR BANDWIDTH MINIMIZATION , 1978 .

[28]  Prabhakar Raghavan,et al.  Sparse matrix reordering schemes for browsing hypertext , 1996 .