Complexity-reduced implementations of complete and null-space-based linear discriminant analysis

Dimensionality reduction has become an important data preprocessing step in a lot of applications. Linear discriminant analysis (LDA) is one of the most well-known dimensionality reduction methods. However, the classical LDA cannot be used directly in the small sample size (SSS) problem where the within-class scatter matrix is singular. In the past, many generalized LDA methods has been reported to address the SSS problem. Among these methods, complete linear discriminant analysis (CLDA) and null-space-based LDA (NLDA) provide good performances. The existing implementations of CLDA are computationally expensive. In this paper, we propose a new and fast implementation of CLDA. Our proposed implementation of CLDA, which is the most efficient one, is equivalent to the existing implementations of CLDA in theory. Since CLDA is an extension of null-space-based LDA (NLDA), our implementation of CLDA also provides a fast implementation of NLDA. Experiments on some real-world data sets demonstrate the effectiveness of our proposed new CLDA and NLDA algorithms.

[1]  Xiaoou Tang,et al.  Dual-space linear discriminant analysis for face recognition , 2004, CVPR 2004.

[2]  Jieping Ye,et al.  Feature Reduction via Generalized Uncorrelated Linear Discriminant Analysis , 2006, IEEE Transactions on Knowledge and Data Engineering.

[3]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[4]  Haesun Park,et al.  Generalizing discriminant analysis using the generalized singular value decomposition , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Delin Chu,et al.  A new and fast implementation for null space based linear discriminant analysis , 2010, Pattern Recognit..

[6]  Xiaoyan Wang,et al.  Regularized orthogonal linear discriminant analysis , 2012, Pattern Recognit..

[7]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[8]  Jieping Ye,et al.  Least squares linear discriminant analysis , 2007, ICML '07.

[9]  Jing-Yu Yang,et al.  Face recognition based on the uncorrelated discriminant transformation , 2001, Pattern Recognit..

[10]  Jieping Ye,et al.  Computational and Theoretical Analysis of Null Space and Orthogonal Linear Discriminant Analysis , 2006, J. Mach. Learn. Res..

[11]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[12]  Yong Wang,et al.  Incremental complete LDA for face recognition , 2012, Pattern Recognit..

[13]  Jian Yang,et al.  Why can LDA be performed in PCA transformed space? , 2003, Pattern Recognit..

[14]  Branko Nadoveza KONKORDAT – MEĐUNARODNI UGOVOR ILI POLITIČKA AKCIJA , 2014 .

[15]  Susan T. Dumais,et al.  Using Linear Algebra for Intelligent Information Retrieval , 1995, SIAM Rev..

[16]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[17]  Haesun Park,et al.  Fast Linear Discriminant Analysis using QR Decomposition and Regularization , 2007 .

[18]  Pierre Baldi,et al.  DNA Microarrays and Gene Expression - From Experiments to Data Analysis and Modeling , 2002 .

[19]  S. Dudoit,et al.  Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data , 2002 .

[20]  W. V. McCarthy,et al.  Discriminant Analysis with Singular Covariance Matrices: Methods and Applications to Spectroscopic Data , 1995 .

[21]  Xiaoou Tang,et al.  Fast Algorithm for Updating the Discriminant Vectors of Dual-Space LDA , 2009, IEEE Transactions on Information Forensics and Security.

[22]  David G. Stork,et al.  Pattern Classification , 1973 .

[23]  Konstantinos N. Plataniotis,et al.  Face recognition using LDA-based algorithms , 2003, IEEE Trans. Neural Networks.

[24]  Jiawei Han,et al.  SRDA: An Efficient Algorithm for Large-Scale Discriminant Analysis , 2008, IEEE Transactions on Knowledge and Data Engineering.

[25]  Jianlin Wang,et al.  Solving the small sample size problem in face recognition using generalized discriminant analysis , 2006, Pattern Recognit..

[26]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[27]  Jieping Ye,et al.  An optimization criterion for generalized discriminant analysis on undersampled problems , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Aleix M. Martínez,et al.  Bayes Optimality in Linear Discriminant Analysis , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Hanqing Lu,et al.  Solving the small sample size problem of LDA , 2002, Object recognition supported by user interaction for service robots.

[30]  Gene H. Golub,et al.  Matrix computations , 1983 .

[31]  Delin Chu,et al.  A New and Fast Orthogonal Linear Discriminant Analysis on Undersampled Problems , 2010, SIAM J. Sci. Comput..

[32]  Haesun Park,et al.  Structure Preserving Dimension Reduction for Clustered Text Data Based on the Generalized Singular Value Decomposition , 2003, SIAM J. Matrix Anal. Appl..

[33]  Jing-Yu Yang,et al.  A theorem on the uncorrelated optimal discriminant vectors , 2001, Pattern Recognit..

[34]  Ja-Chen Lin,et al.  A new LDA-based face recognition system which can solve the small sample size problem , 1998, Pattern Recognit..

[35]  Kuldip K. Paliwal,et al.  A new perspective to null linear discriminant analysis method and its fast implementation using random matrix multiplication with scatter matrices , 2012, Pattern Recognit..

[36]  Jieping Ye,et al.  Characterization of a Family of Algorithms for Generalized Discriminant Analysis on Undersampled Problems , 2005, J. Mach. Learn. Res..