Model-Free Portfolio Theory and Its Functional Master Formula

We use pathwise Ito calculus to prove two strictly pathwise versions of the master formula in Fernholz' stochastic portfolio theory. Our first version is set within the framework of Follmer's pathwise Ito calculus and works for portfolios generated from functions that may depend on the current states of the market portfolio and an additional path of finite variation. The second version is formulated within the functional pathwise Ito calculus of Dupire (2009) and Cont \& Fournie (2010) and allows for portfolio-generating functionals that may depend additionally on the entire path of the market portfolio. Our results are illustrated by several examples and shown to work on empirical market data.

[1]  Walter Willinger,et al.  Dynamic spanning without probabilities , 1994 .

[2]  Ioannis Karatzas,et al.  Diversity-weighted portfolios with negative parameter , 2015 .

[3]  Hans Föllmer,et al.  Calcul d'ito sans probabilites , 1981 .

[4]  Robert Fernholz,et al.  Diversity and relative arbitrage in equity markets , 2008, Finance Stochastics.

[5]  Alexander Schied,et al.  On a class of generalized Takagi functions with linear pathwise quadratic variation , 2015, 1501.00837.

[6]  Ting-Kam Leonard Wong,et al.  The geometry of relative arbitrage , 2014, 1402.3720.

[7]  Bruno Dupire,et al.  Functional Itô Calculus , 2009 .

[8]  Ting-Kam Leonard Wong Universal portfolios in stochastic portfolio theory , 2015, 1510.02808.

[9]  E. Fernholz Stochastic Portfolio Theory , 2002 .

[10]  Ting-Kam Leonard Wong,et al.  Energy, entropy, and arbitrage , 2013, 1308.5376.

[11]  Constantinos Kardaras,et al.  The numéraire portfolio in semimartingale financial models , 2007, Finance Stochastics.

[12]  Ioannis Karatzas,et al.  Trading strategies generated by Lyapunov functions , 2016, Finance Stochastics.

[13]  D. Freedman Brownian motion and diffusion , 1971 .

[14]  Anna Ananova,et al.  Pathwise integration with respect to paths of finite quadratic variation , 2016, 1603.03305.

[15]  Alexander Schied,et al.  Pathwise no-arbitrage in a class of Delta hedging strategies , 2015, 1511.00026.

[16]  Rama Cont,et al.  Change of variable formulas for non-anticipative functionals on path space ✩ , 2010, 1004.1380.

[17]  Dieter Sondermann,et al.  Introduction to stochastic calculus for finance : a new didactic approach , 2006 .

[18]  E. C. Titchmarsh,et al.  The Laplace Transform , 1991, Heat Transfer 1.

[19]  Rama Cont,et al.  Functional Ito calculus and stochastic integral representation of martingales , 2010, 1002.2446.

[20]  Alexander Schied,et al.  The associativity rule in pathwise functional It\^o calculus , 2016, 1605.08861.

[21]  Jan Obłój,et al.  Arbitrage Bounds for Prices of Weighted Variance Swaps , 2010 .

[22]  Kangjianan Xie,et al.  Generalised Lyapunov Functions and Functionally Generated Trading Strategies , 2019, Applied Mathematical Finance.

[23]  Ting-Kam Leonard Wong Optimization of relative arbitrage , 2014, 1407.8300.

[24]  I. Karatzas,et al.  Relative arbitrage in volatility-stabilized markets , 2005 .

[25]  Alexander Schied,et al.  Constructing functions with prescribed pathwise quadratic variation , 2015, 1511.04678.

[26]  Francesco Russo,et al.  A regularization approach to functional Itô calculus and strong-viscosity solutions to path-dependent PDEs , 2014, 1401.5034.

[27]  Hans Föllmer,et al.  Probabilistic aspects of financial risk , 2000 .

[28]  Alexander Schied,et al.  Model-Free CPPI , 2013, 1305.5915.

[29]  Winslow Strong,et al.  Generalizations of Functionally Generated Portfolios with Applications to Statistical Arbitrage , 2012, SIAM J. Financial Math..

[30]  Jan Oblój,et al.  Robust Hedging of Double Touch Barrier Options , 2008, SIAM J. Financial Math..

[31]  E. Robert Fernholz,et al.  Portfolio Generating Functions , 1998 .

[32]  Alexander Schied,et al.  Robustness of Delta Hedging for Path-Dependent Options in Local Volatility Models , 2007, Journal of Applied Probability.

[33]  Robert Fernholz,et al.  On the diversity of equity markets , 1999 .