SPECTROSCOPIC STUDIES OF Mx[Pt(CN)4] · yH2O *

Square planar [Pt(CN),]’complexes tend to crystallize in columnar structures. The distances between the molecular units along the columnar axis are short, compared with the separations from column to column. This structure type is expected to exhibit some interesting physical properties. One compound (K2[Pt(CN)4]Bro,3 3.2H2O(KCP Xo,3)) of the relatively large series of the tetracyanoplatinates has become famous mainly because of its extremely anisotropic conductivity.’-’ However, most members of the tetracyanoplatinates are nonconducting compounds. This might be the reason why these have not attracted as many scientific investigations. TABLE 1 shows a list of the tetracyanoplatinates (MCP) which crystallize in columnar structures. The Pt-Pt-distances R in the direction of the column can be varied according to the choice of the cations M and/or the crystal water content y from R = 3.67 6; to 3.09 6;. This allows the “adjustment” of the intermolecular interaction in the direction of the chains over a large range. This adjustment by the chemical substitution method, however, is discontinuous. Application of high pressure, on the other hand, permits “tuning” the in-chain interaction to any intermediate value. Consequently, the spectroscopic properties can be tuned continuously, as well. The purpose of the present paper is, first, to summarize recent results found by spectroscopic investigations with polarized light under ambient conditions, a t high pressure, and at low temperature. A correlation between the transition energies and structural properties is pointed out. Mainly R-dependent trends are discussed, and the results of an electronic band structure calculation are presented. In the second part of the paper the influence of the immediate surrounding on the [Pt(CN),]’columns is discussed. For this purpose, rare earth cations (e.g. M = Sm’+) with energy levels near the excited column states are used as “probe” ions. Energy transfer from the tetracyanoplatinate columns (donors) to Sm3+ (acceptor) is observed. Thus, a new system for energy-transfer investigations is presented that exhibits interesting aspects because of the tuneability of the donor states.

[1]  Jack M. Williams,et al.  Structural studies of precursor and partially oxidized conducting complexes. III. A neutron diffraction study of barium tetracyanoplatinate(II) tetrahydrate , 1977 .

[2]  P. L. Johnson,et al.  Structural studies of precursor and partially oxidized conducting complexes. 8. A neutron diffraction investigation of rubidium tetracyanoplatinate (2:1) sesquihydrate, Rb2[Pt(CN)4].1.5H2O , 1977 .

[3]  U. Rößler,et al.  On the nature of energy bands in tetracyanoplatinates , 1977 .

[4]  H. Schulz,et al.  Crystal Structure of Cs2 [Pt(CN)4] · H2O , 1977 .

[5]  H. Gray,et al.  POLARIZED ELECTRONIC ABSORPTION SPECTRA OF (N‐BU4N)2(PT(CN)4) AT 5 K , 1977 .

[6]  M. Stock,et al.  Polarized emission from Ba[Pt(CN)4]·4H2O single crystals under high pressure , 1976 .

[7]  H. Otto,et al.  Notizen: Crystal Data of Cs2[Pt(CN)4] · H2O , 1976 .

[8]  Joel S. Miller,et al.  Electronic structure of the tetracyanoplatinate(II) anion , 1976 .

[9]  Jack M. Williams,et al.  Crystal and molecular structure by neutron diffraction of potassium tetracyanoplatinate(II) trihydrate, the starting product for partially oxidized conducting cyanoplatinate salts , 1976 .

[10]  Hartmut Yersin,et al.  Spektroskopisches Verhalten kristalliner Tetracyanoplatinate mit quasi-eindimensionaler Struktur , 1975 .

[11]  R. P. Messmer,et al.  Importance of Chemical Effects in Determining the Free-Electron-Like Band Structure ofK2Pt(CN)4Br0.3·3H2O , 1975 .

[12]  H. Isci,et al.  Electronic structure and spectra of square-planar cyano and cyanoamine complexes of platinum(II) , 1975 .

[13]  H. Yersin,et al.  Spectroscopic Behaviour of Quasi-One-Dimensional Linear Chains in MgPt(CN)4 · 7 H2O Single Crystals , 1975 .

[14]  P. Day EXCITONS IN ONE-DIMENSIONAL TETRACYANOPLATINITE SALTS , 1975 .

[15]  H. Keller Low-Dimensional Cooperative Phenomena , 1975 .

[16]  E. Würzberg,et al.  Energy gap law in the solvent isotope effect on radiationless transitions of rare earth ions , 1975 .

[17]  R. P. Messmer,et al.  The electronic structure of the Pt (CN)2−4 ion , 1974 .

[18]  Hartmut Yersin,et al.  Emission, Emissionslebensdauer und Absorption von [Cr urea6]X3-Einkristallen , 1974 .

[19]  M. L. Moreau-Colin Electronic spectra and structural properties of complex tetracyanides of platinum, palladium and nickel , 1972 .

[20]  P. Schatz,et al.  ULTRAVIOLET SPECTRAL ASSIGNMENTS IN THE TETRACYANO COMPLEXES OF PLATINUM, PALLADIUM AND NICKEL FROM MAGNETIC CIRCULAR DICHROISM , 1969 .

[21]  N. Turro,et al.  Energy transfer and organic photochemistry , 1969 .

[22]  K. Krogmann,et al.  Strukturen mit Pt-Ketten. III. Erdalkalitetracyanoplatinate(II). , 1968 .

[23]  H. Hausen,et al.  Strukturen mit Pt‐Ketten, I. „Violettes”︁ Kaliumtetracyanoplatinat, K2[Pt(CN)4]X0,3 · 2,5 H2O (X = Cl, Br) , 1968 .

[24]  Robert A. Satten,et al.  Spectra and energy levels of rare earth ions in crystals , 1968 .

[25]  H. Poulet,et al.  Étude des constantes optiques des platocyanures alcalino-terreux cristallisés , 1962 .

[26]  R. E. Whan,et al.  Intramolecular Energy Transfer in Rare Earth Chelates. Role of the Triplet State , 1961 .

[27]  B. Linder Order‐Disorder Phenomena , 1954 .

[28]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .