Solving dynamic multi-objective optimisation problems using vector evaluated particle swarm optimisation

Most optimisation problems in everyday life are not static in nature, have multiple objectives and at least two of the objectives are in conflict with one another. However, most research focusses on either static multi-objective optimisation (MOO) or dynamic singleobjective optimisation (DSOO). Furthermore, most research on dynamic multi-objective optimisation (DMOO) focusses on evolutionary algorithms (EAs) and only a few particle swarm optimisation (PSO) algorithms exist. This thesis proposes a multi-swarm PSO algorithm, dynamic Vector Evaluated Particle Swarm Optimisation (DVEPSO), to solve dynamic multi-objective optimisation problems (DMOOPs). In order to determine whether an algorithm solves DMOO efficiently, functions are required that resembles real world DMOOPs, called benchmark functions, as well as functions that quantify the performance of the algorithm, called performance measures. However, one major problem in the field of DMOO is a lack of standard benchmark functions and performance measures. To address this problem, an overview is provided from the current literature and shortcomings of current DMOO benchmark functions and performance measures are discussed. In addition, new DMOOPs are introduced to address the identified shortcomings of current benchmark functions. Guides guide the optimisation process of DVEPSO. Therefore, various guide update approaches are investigated. Furthermore, a sensitivity analysis of DVEPSO is conducted to determine the influence of various parameters on the performance of DVEPSO. The investigated parameters include approaches to manage boundary constraint violations, approaches to share knowledge between the sub-swarms and responses to changes in the environment that are applied to either the particles of the sub-swarms or the non-dominated solutions stored in the archive. From these experiments the best DVEPSO configuration is determined and compared against four state-of-the-art DMOO algorithms.

[1]  Hartmut Schmeck,et al.  Designing evolutionary algorithms for dynamic optimization problems , 2003 .

[2]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[3]  Andries Petrus Engelbrecht,et al.  Algorithm comparisons and the significance of population size , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[4]  E. Hughes Multiple single objective Pareto sampling , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[5]  Kalyanmoy Deb,et al.  A Computationally Efficient Evolutionary Algorithm for Real-Parameter Optimization , 2002, Evolutionary Computation.

[6]  Bin Li,et al.  Investigation of memory-based multi-objective optimization evolutionary algorithm in dynamic environment , 2009, 2009 IEEE Congress on Evolutionary Computation.

[7]  Julio Ortega Lopera,et al.  A single front genetic algorithm for parallel multi-objective optimization in dynamic environments , 2009, Neurocomputing.

[8]  Chukwudi Anyakoha,et al.  A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications , 2008, Natural Computing.

[9]  Tapabrata Ray,et al.  A Memetic Algorithm for Dynamic Multiobjective Optimization , 2009 .

[10]  Kalyanmoy Deb,et al.  Dynamic Multi-objective Optimization and Decision-Making Using Modified NSGA-II: A Case Study on Hydro-thermal Power Scheduling , 2007, EMO.

[11]  Geoffrey Basil Leyland,et al.  Multi-objective optimisation applied to industrial energy problems , 2002 .

[12]  William M. Spears,et al.  The role of mutation and recombination in evolutionary algorithms , 1998 .

[13]  Georges R. Harik,et al.  Foundations of Genetic Algorithms , 1997 .

[14]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[15]  Andries Petrus Engelbrecht,et al.  CIlib: A collaborative framework for Computational Intelligence algorithms - Part I , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[16]  Jürgen Branke,et al.  Optimization in Dynamic Environments , 2002 .

[17]  Patrick Siarry,et al.  Introduction: multiobjective optimization and domination , 2004 .

[18]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[19]  Li Bin FH-MOEA:multi-objective evolutionary algorithm based-on fast hyper-volume contribution approach , 2008 .

[20]  Nicola Beume,et al.  S-Metric Calculation by Considering Dominated Hypervolume as Klee's Measure Problem , 2009, Evolutionary Computation.

[21]  Hugo de Garis,et al.  A Dynamic Multi-Objective Evolutionary Algorithm Based on an Orthogonal Design , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[22]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[23]  C. Coello,et al.  Years of Evolutionary Multi-Objective Optimization : What Has Been Done and What Remains To Be Done , 2006 .

[24]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[25]  Kay Chen Tan,et al.  A Coevolutionary Paradigm for Dynamic Multi-Objective Optimization , 2009 .

[26]  Zafer Bingul,et al.  Adaptive genetic algorithms applied to dynamic multiobjective problems , 2007, Appl. Soft Comput..

[27]  A. Sima Etaner-Uyar,et al.  Towards an analysis of dynamic environments , 2005, GECCO '05.

[28]  Dimitris K. Tasoulis,et al.  Vector evaluated differential evolution for multiobjective optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[29]  Helen G. Cobb,et al.  An Investigation into the Use of Hypermutation as an Adaptive Operator in Genetic Algorithms Having Continuous, Time-Dependent Nonstationary Environments , 1990 .

[30]  Andries Petrus Engelbrecht,et al.  Hybridizing PSO and DE for improved vector evaluated multi-objective optimization , 2009, 2009 IEEE Congress on Evolutionary Computation.

[31]  Tapabrata Ray,et al.  Memetic algorithm for dynamic bi-objective optimization problems , 2009, 2009 IEEE Congress on Evolutionary Computation.

[32]  Bin Li,et al.  Multi-strategy ensemble evolutionary algorithm for dynamic multi-objective optimization , 2010, Memetic Comput..

[33]  Zhuhong Zhang,et al.  Multiobjective optimization immune algorithm in dynamic environments and its application to greenhouse control , 2008, Appl. Soft Comput..

[34]  Xiaodong Li,et al.  On performance metrics and particle swarm methods for dynamic multiobjective optimization problems , 2007, 2007 IEEE Congress on Evolutionary Computation.

[35]  Chukwudi Anyakoha,et al.  A review of particle swarm optimization. Part I: background and development , 2007, Natural Computing.

[36]  J. Kennedy,et al.  Population structure and particle swarm performance , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[37]  David Wallace,et al.  Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach , 2006, GECCO.

[38]  Rajkumar Buyya,et al.  A pareto following variation operator for fast-converging multiobjective evolutionary algorithms , 2008, GECCO '08.

[39]  M. Clerc,et al.  Particle Swarm Optimization , 2006 .

[40]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[41]  Qingfu Zhang,et al.  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1 RM-MEDA: A Regularity Model-Based Multiobjective Estimation of , 2022 .

[42]  Joshua D. Knowles Local-search and hybrid evolutionary algorithms for Pareto optimization , 2002 .

[43]  Kay Chen Tan,et al.  Handling Uncertainties in Evolutionary Multi-Objective Optimization , 2008, WCCI.

[44]  Qingfu Zhang,et al.  Prediction-Based Population Re-initialization for Evolutionary Dynamic Multi-objective Optimization , 2007, EMO.

[45]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[46]  Zikrija Avdagic,et al.  Evolutionary Approach to Solving Non-stationary Dynamic Multi-Objective Problems , 2009, Foundations of Computational Intelligence.

[47]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[48]  Andries Petrus Engelbrecht,et al.  Dynamic Multi-objective Optimisation Using PSO , 2010, Multi-Objective Swarm Intelligent System.

[49]  Francisco Herrera,et al.  Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis , 1998, Artificial Intelligence Review.

[50]  Wei Chu,et al.  Handling boundary constraints for particle swarm optimization in high-dimensional search space , 2011, Inf. Sci..

[51]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[52]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[53]  R. W. Dobbins,et al.  Computational intelligence PC tools , 1996 .

[54]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[55]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[56]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[57]  Dipl. Ing. Karl Heinz Kellermayer NUMERISCHE OPTIMIERUNG VON COMPUTER-MODELLEN MITTELS DER EVOLUTIONSSTRATEGIE Hans-Paul Schwefel Birkhäuser, Basel and Stuttgart, 1977 370 pages Hardback SF/48 ISBN 3-7643-0876-1 , 1977 .

[58]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[59]  Tapabrata Ray,et al.  Development of a memetic algorithm for Dynamic Multi-Objective Optimization and its applications for online neural network modeling of UAVs , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[60]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[61]  Konstantinos E. Parsopoulos,et al.  MULTIOBJECTIVE OPTIMIZATION USING PARALLEL VECTOR EVALUATED PARTICLE SWARM OPTIMIZATION , 2003 .

[62]  Andries Petrus Engelbrecht,et al.  Archive management for dynamic multi-objective optimisation problems using vector evaluated particle swarm optimisation , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[63]  Russell C. Eberhart,et al.  Tracking and optimizing dynamic systems with particle swarms , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[64]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[65]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[66]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[67]  C. Coello,et al.  Improving PSO-based Multi-Objective Optimization using Crowding , Mutation and �-Dominance , 2005 .

[68]  Kay Chen Tan,et al.  A Competitive-Cooperative Coevolutionary Paradigm for Dynamic Multiobjective Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[69]  Günter Rudolph,et al.  Evolutionary Optimization of Dynamic Multiobjective Functions , 2006 .

[70]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[71]  Julio Ortega Lopera,et al.  Approaching Dynamic Multi-Objective Optimization Problems by Using Parallel Evolutionary Algorithms , 2010, Advances in Multi-Objective Nature Inspired Computing.

[72]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[73]  Maoguo Gong,et al.  Clonal Selection Algorithm for Dynamic Multiobjective Optimization , 2005, CIS.

[74]  Rajkumar Roy,et al.  Dynamic multi-objective optimisation for machining gradient materials , 2008 .

[75]  Kalyanmoy Deb Kanpur Single and Multi-Objective Dynamic Optimization : Two Tales from an Evolutionary Perspective , 2011 .

[76]  E. Thorndike On the Organization of Intellect. , 1921 .

[77]  Qingfu Zhang,et al.  A Multiobjective Differential Evolution Based on Decomposition for Multiobjective Optimization with Variable Linkages , 2006, PPSN.

[78]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[79]  M. Farina A Minimal Cost Hybrid Strategy for Pareto Optimal Front Approximation , 2002 .

[80]  A. Carlisle,et al.  Tracking changing extrema with adaptive particle swarm optimizer , 2002, Proceedings of the 5th Biannual World Automation Congress.

[81]  Riccardo Poli,et al.  Particle Swarm Optimisation , 2011 .

[82]  Gheorghe Paun,et al.  Computing with Membranes , 2000, J. Comput. Syst. Sci..

[83]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[84]  Kenneth A. De Jong,et al.  Evolving in a Changing World , 1999, ISMIS.

[85]  F. Burnet The clonal selection theory of acquired immunity , 1959 .

[86]  Tapabrata Ray,et al.  Constrained many-objective optimization: A way forward , 2009, 2009 IEEE Congress on Evolutionary Computation.

[87]  Bojin Zheng,et al.  A New Dynamic Multi-objective Optimization Evolutionary Algorithm , 2007, Third International Conference on Natural Computation (ICNC 2007).

[88]  Min Tang,et al.  The Construction of Dynamic Multi-objective Optimization Test Functions , 2007, ISICA.

[89]  Andries Petrus Engelbrecht,et al.  A study of particle swarm optimization particle trajectories , 2006, Inf. Sci..

[90]  Yuping Wang,et al.  An evolutionary algorithm for dynamic multi-objective optimization , 2008, Appl. Math. Comput..

[91]  Kay Chen Tan,et al.  A predictive gradient strategy for multiobjective evolutionary algorithms in a fast changing environment , 2010, Memetic Comput..

[92]  Andries Petrus Engelbrecht,et al.  Solving dynamic multi-objective problems with vector evaluated particle swarm optimisation , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[93]  Carlos A. Coello Coello,et al.  A Micro-Genetic Algorithm for Multiobjective Optimization , 2001, EMO.

[94]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[95]  Aluizio F. R. Araújo,et al.  Generalized immigration schemes for dynamic evolutionary multiobjective optimization , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[96]  Lothar Thiele,et al.  The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration , 2007, EMO.

[97]  Steven Guan,et al.  Evolving Dynamic Multi-Objective Optimization Problems with Objective Replacement , 2005, Artificial Intelligence Review.

[98]  Carlos M. Fonseca,et al.  An Improved Dimension-Sweep Algorithm for the Hypervolume Indicator , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[99]  Francisco de Toro,et al.  The Parallel Single Front Genetic Algorithm (PSFGA) in Dynamic Multi-objective Optimization , 2007, IWANN.

[100]  Carlos A. Coello Coello,et al.  Evolutionary multiobjective optimization , 2011, WIREs Data Mining Knowl. Discov..

[101]  Yang Yang,et al.  A distributed cooperative coevolutionary algorithm for multiobjective optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[102]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[103]  Xi Chen,et al.  Using Diversity as an Additional-objective in Dynamic Multi-objective Optimization Algorithms , 2009, 2009 Second International Symposium on Electronic Commerce and Security.

[104]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[105]  Kalyanmoy Deb,et al.  Multi-objective test problems, linkages, and evolutionary methodologies , 2006, GECCO.

[106]  Nicola Beume,et al.  On the Complexity of Computing the Hypervolume Indicator , 2009, IEEE Transactions on Evolutionary Computation.

[107]  Paolo Amato,et al.  An ALife-Inspired Evolutionary Algorithm for Dynamic Multiobjective Optimization Problems , 2005 .

[108]  Bernhard Sendhoff,et al.  Constructing Dynamic Optimization Test Problems Using the Multi-objective Optimization Concept , 2004, EvoWorkshops.

[109]  Rolf Wanka,et al.  Particle Swarm Optimization in High-Dimensional Bounded Search Spaces , 2007, 2007 IEEE Swarm Intelligence Symposium.

[110]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[111]  Kalyanmoy Deb,et al.  Dynamic multiobjective optimization problems: test cases, approximations, and applications , 2004, IEEE Transactions on Evolutionary Computation.

[112]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[113]  A. Townsend Genetic Algorithms – a Tutorial , 2003 .

[114]  Jason R. Schott Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. , 1995 .

[115]  Zhuhong Zhang,et al.  Artificial immune system in dynamic environments solving time-varying non-linear constrained multi-objective problems , 2011, Soft Comput..

[116]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[117]  Yuping Wang,et al.  New Evolutionary Algorithm for Dynamic Multiobjective Optimization Problems , 2006, ICNC.

[118]  M.N. Vrahatis,et al.  Particle swarm optimizers for Pareto optimization with enhanced archiving techniques , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[119]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[120]  M. Hansen,et al.  Evaluating the quality of approximations to the non-dominated set , 1998 .

[121]  Carlos Cruz,et al.  Optimization in dynamic environments: a survey on problems, methods and measures , 2011, Soft Comput..

[122]  Chun-an Liu New Dynamic Multiobjective Evolutionary Algorithm with Core Estimation of Distribution , 2010, 2010 International Conference on Electrical and Control Engineering.

[123]  James Kennedy,et al.  The particle swarm: social adaptation of knowledge , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[124]  Julio Ortega Lopera,et al.  Parallel Processing for Multi-objective Optimization in Dynamic Environments , 2007, 2007 IEEE International Parallel and Distributed Processing Symposium.

[125]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[126]  Lalit M. Patnaik,et al.  Genetic algorithms: a survey , 1994, Computer.

[127]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[128]  Ba-Ngu Vo,et al.  A Consistent Metric for Performance Evaluation of Multi-Object Filters , 2008, IEEE Transactions on Signal Processing.

[129]  Pascal Bouvry,et al.  On dynamic multi-objective optimization, classification and performance measures , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[130]  Tong Heng Lee,et al.  A cooperative coevolutionary algorithm for multiobjective optimization , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).

[131]  Mario Cámara Sola,et al.  Parallel processing for dynamic multi-objetive optimization , 2010 .

[132]  Maximino Salazar Lechuga,et al.  Multi-objective optimisation using sharing in swarm optimisation algorithms , 2009 .

[133]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[134]  A. K. M. Khaled Ahsan Talukder,et al.  Towards high speed multiobjective evolutionary optimizers , 2008, GECCO '08.

[135]  Karsten Weicker,et al.  Performance Measures for Dynamic Environments , 2002, PPSN.

[136]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[137]  Yuping Wang,et al.  Dynamic Multi-objective Optimization Evolutionary Algorithm , 2007, Third International Conference on Natural Computation (ICNC 2007).

[138]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[139]  Yuping Wang,et al.  U-measure: a quality measure for multiobjective programming , 2003, IEEE Trans. Syst. Man Cybern. Part A.

[140]  Michael N. Vrahatis,et al.  Recent approaches to global optimization problems through Particle Swarm Optimization , 2002, Natural Computing.

[141]  Kay Chen Tan,et al.  An investigation on evolutionary gradient search for multi-objective optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[142]  Fang Liu,et al.  A sphere-dominance based preference immune-inspired algorithm for dynamic multi-objective optimization , 2010, GECCO '10.

[143]  Xiao-Feng Xie,et al.  Handling boundary constraints for numerical optimization by particle swarm flying in periodic search space , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[144]  Carlos A. Coello Coello,et al.  Evolutionary multi-objective optimization: a historical view of the field , 2006, IEEE Comput. Intell. Mag..

[145]  Il Hong Suh,et al.  Dynamic multi-objective optimization based on membrane computing for control of time-varying unstable plants , 2011, Inf. Sci..

[146]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[147]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[148]  Xiaodong Li,et al.  Better Spread and Convergence: Particle Swarm Multiobjective Optimization Using the Maximin Fitness Function , 2004, GECCO.

[149]  Richard E. Rosenthal,et al.  Principles of multiobjective optimization , 1984 .