Genetic Algorithms : Concepts and Designs

1. Introduction, Background and Biological Inspiration.- 1.1 Biological Background.- 1.1.1 Coding of DNA.- 1.1.2 Flow of Genetic Information.- 1.1.3 Recombination.- 1.1.4 Mutation.- 1.2 Conventional Genetic Algorithm.- 1.3 Theory and Hypothesis.- 1.3.1 Schema Theory.- 1.3.2 Building Block Hypothesis.- 1.4 A Simple Example.- 2. Modifications to Genetic Algorithms.- 2.1 Chromosome Representation.- 2.2 Objective and Fitness Functions.- 2.2.1 Linear Scaling.- 2.2.2 Sigma Truncation.- 2.2.3 Power Law Scaling.- 2.2.4 Ranking.- 2.3 Selection Methods.- 2.4 Genetic Operations.- 2.4.1 Crossover.- 2.4.2 Mutation.- 2.4.3 Operational Rates Settings.- 2.4.4 Reordering.- 2.5 Replacement Scheme.- 2.6 A Game of Genetic Creatures.- 2.7 Chromosome Representation.- 2.8 Fitness Function.- 2.9 Genetic Operation.- 2.9.1 Selection Window for Functions and Parameters.- 2.10 Demo and Run.- 3. Intrinsic Characteristics.- 3.1 Parallel Genetic Algorithm.- 3.1.1 Global GA.- 3.1.2 Migration GA.- 3.1.3 Diffusion GA.- 3.2 Multiple Objective.- 3.3 Robustness.- 3.4 Multimodal.- 3.5 Constraints.- 3.5.1 Searching Domain.- 3.5.2 Repair Mechanism.- 3.5.3 Penalty Scheme.- 3.5.4 Specialized Genetic Operations.- 4. Hierarchical Genetic Algorithm.- 4.1 Biological Inspiration.- 4.1.1 Regulatory Sequences and Structural Genes.- 4.1.2 Active and Inactive Genes.- 4.2 Hierarchical Chromosome Formulation.- 4.3 Genetic Operations.- 4.4 Multiple Objective Approach.- 4.4.1 Iterative Approach.- 4.4.2 Group Technique.- 4.4.3 Multiple-Objective Ranking.- 5. Genetic Algorithms in Filtering.- 5.1 Digital IIR Filter Design.- 5.1.1 Chromosome Coding.- 5.1.2 The Lowest Filter Order Criterion.- 5.2 Time Delay Estimation.- 5.2.1 Problem Formulation.- 5.2.2 Genetic Approach.- 5.2.3 Results.- 5.3 Active Noise Control.- 5.3.1 Problem Formulation.- 5.3.2 Simple Genetic Algorithm.- 5.3.3 Multiobjective Genetic Algorithm Approach.- 5.3.4 Parallel Genetic Algorithm Approach.- 5.3.5 Hardware GA Processor.- 6. Genetic Algorithms in H-infinity Control.- 6.1 A Mixed Optimization Design Approach.- 6.1.1 Hierarchical Genetic Algorithm.- 6.1.2 Application I: The Distillation Column Design.- 6.1.3 Application II: Benchmark Problem.- 6.1.4 Design Comments.- 7. Hierarchical Genetic Algorithms in Computational Intelligence.- 7.1 Neural Networks.- 7.1.1 Introduction of Neural Network.- 7.1.2 HGA Trained Neural Network (HGANN).- 7.1.3 Simulation Results.- 7.1.4 Application of HGANN on Classification.- 7.2 Fuzzy Logic.- 7.2.1 Basic Formulation of Fuzzy Logic Controller.- 7.2.2 Hierarchical Structure.- 7.2.3 Application I: Water Pump System.- 7.2.4 Application II: Solar Plant.- 8. Genetic Algorithms in Speech Recognition Systems.- 8.1 Background of Speech Recognition Systems.- 8.2 Block Diagram of a Speech Recognition System.- 8.3 Dynamic Time Warping.- 8.4 Genetic Time Warping Algorithm (GTW).- 8.4.1 Encoding mechanism.- 8.4.2 Fitness function.- 8.4.3 Selection.- 8.4.4 Crossover.- 8.4.5 Mutation.- 8.4.6 Genetic Time Warping with Relaxed Slope Weighting Function (GTW-RSW).- 8.4.7 Hybrid Genetic Algorithm.- 8.4.8 Performance Evaluation.- 8.5 Hidden Markov Model using Genetic Algorithms.- 8.5.1 Hidden Markov Model.- 8.5.2 Training Discrete HMMs using Genetic Algorithms.- 8.5.3 Genetic Algorithm for Continuous HMM Training.- 8.6 A Multiprocessor System for Parallel Genetic Algorithms.- 8.6.1 Implementation.- 8.7 Global GA for Parallel GA-DTW and PGA-HMM.- 8.7.1 Experimental Results of Nonlinear Time-Normalization by the Parallel GA-DTW.- 8.8 Summary.- 9. Genetic Algorithms in Production Planning and Scheduling Problems.- 9.1 Background of Manufacturing Systems.- 9.2 ETPSP Scheme.- 9.2.1 ETPSP Model.- 9.2.2 Bottleneck Analysis.- 9.2.3 Selection of Key-Processes.- 9.3 Chromosome Configuration.- 9.3.1 Operational Parameters for GA Cycles.- 9.4 GA Application for ETPSP.- 9.4.1 Case 1: Two-product ETPSP.- 9.4.2 Case 2: Multi-product ETPSP.- 9.4.3 Case 3: MOGA Approach.- 9.5 Concluding Remarks.- 10. Genetic Algorithms in Communication Systems.- 10.1 Virtual Path Design in ATM.- 10.1.1 Problem Formulation.- 10.1.2 Average packet delay.- 10.1.3 Constraints.- 10.1.4 Combination Approach.- 10.1.5 Implementation.- 10.1.6 Results.- 10.2 Mesh Communication Network Design.- 10.2.1 Design of Mesh Communication Networks.- 10.2.2 Network Optimization using GA.- 10.2.3 Implementation.- 10.2.4 Results.- 10.3 Wireles Local Area Network Design.- 10.3.1 Problem Formulation.- 10.3.2 Multiobjective HGA Approach.- 10.3.3 Implementation.- 10.3.4 Results.- Appendix A.- Appendix B.- Appendix C.- Appendix D.- Appendix E.- Appendix F.- References.

[1]  Kim Fung Man,et al.  Genetic algorithms for control and signal processing , 1997, Proceedings of the IECON'97 23rd International Conference on Industrial Electronics, Control, and Instrumentation (Cat. No.97CH36066).

[2]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[3]  A. J. Chipperfield,et al.  H ∞ design of an EMS control system for a maglev vehicle using evolutionary algorithms , 1995 .

[4]  Sam Kwong,et al.  Hierarchical Genetic Algorithm , 1999 .

[5]  Kim-Fung Man,et al.  Using Genetic Algorithms to Design Mesh Networks , 1997, Computer.

[6]  E. Armstrong Robust controller design for flexible structures using normalized coprime factor plant descriptions , 1993 .

[7]  Kazuo Asakawa,et al.  Neural networks in Japan , 1994, CACM.

[8]  King-Tim Ko,et al.  Microwave communication system designs using hierarchical genetic algorithm , 1997, Proceedings of 1997 Asia-Pacific Microwave Conference.

[9]  K. F. Man,et al.  Hierarchical genetic fuzzy controller for a solar power plant , 1998, IEEE International Symposium on Industrial Electronics. Proceedings. ISIE'98 (Cat. No.98TH8357).

[10]  P. Wang,et al.  Optimal Design of PID Process Controllers based on Genetic Algorithms , 1993 .

[11]  A. H. Jones,et al.  Genetic auto-tuning of PID controllers , 1995 .