Hybrid systems: Generalized solutions and robust stability

[1]  Bo Hu,et al.  Towards a stability theory of general hybrid dynamical systems , 1999, Autom..

[2]  E. Ryan An Integral Invariance Principle for Differential Inclusions with Applications in Adaptive Control , 1998 .

[3]  Eduardo Sontag Clocks and insensitivity to small measurement errors , 1999 .

[4]  Jean-Pierre Aubin,et al.  Impulse differential inclusions: a viability approach to hybrid systems , 2002, IEEE Trans. Autom. Control..

[5]  Otomar Hájek,et al.  Discontinuous differential equations, II , 1979 .

[6]  Christophe Prieur,et al.  Perturbed hybrid systems, applications in control theory , 2003 .

[7]  Andrew R. Teel,et al.  Smooth Lyapunov functions and robustness of stability for difference inclusions , 2004, Syst. Control. Lett..

[8]  G. Tallini,et al.  ON THE EXISTENCE OF , 1996 .

[9]  A. Teel,et al.  A Smooth Lyapunov Function from a Class-kl Estimate Involving Two Positive Semideenite Functions , 1999 .

[10]  R. Decarlo,et al.  Perspectives and results on the stability and stabilizability of hybrid systems , 2000, Proceedings of the IEEE.

[11]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[12]  Andrew R. Teel,et al.  Examples when nonlinear model predictive control is nonrobust , 2004, Autom..

[13]  On Continuous Dependence of Solutions of Impulsive Differential Inclusions and Impulse Control Problems , 2002 .

[14]  Ian A. Hiskens,et al.  Trajectory Sensitivity Analysis of Hybrid Systems , 2000 .

[15]  Shouchuan Hu Differential equations with discontinuous right-hand sides☆ , 1991 .

[16]  A. Michel Recent trends in the stability analysis of hybrid dynamical systems , 1999 .

[17]  Karl Henrik Johansson,et al.  Dynamical properties of hybrid automata , 2003, IEEE Trans. Autom. Control..

[18]  Hyungbo Shim,et al.  Further results on robustness of (possibly discontinuous) sample and hold feedback , 2004, IEEE Transactions on Automatic Control.

[19]  Yu. S. Ledyaev,et al.  Asymptotic controllability implies feedback stabilization , 1997, IEEE Trans. Autom. Control..

[20]  Fabio Ancona,et al.  Flow Stability of Patchy Vector Fields and Robust Feedback Stabilization , 2002, SIAM J. Control. Optim..

[21]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[22]  A. Astolfi,et al.  Robust stabilization of chained systems via hybrid control , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[23]  H. Hermes Discontinuous vector fields and feedback control , 1966 .

[24]  L. Tavernini Differential automata and their discrete simulators , 1987 .

[25]  A. Michel,et al.  Stability theory for hybrid dynamical systems , 1998, IEEE Trans. Autom. Control..

[26]  S. Sastry,et al.  Structural stability of hybrid systems1 , 2001, 2001 European Control Conference (ECC).

[27]  Francesca Ceragioli,et al.  Some remarks on stabilization by means of discontinuous feedbacks , 2002, Syst. Control. Lett..

[28]  S. Sastry,et al.  On the existence of executions of hybrid automata , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[29]  M. Branicky Multiple Lyapunov functions and other analysis tools for switched and hybrid systems , 1998, IEEE Trans. Autom. Control..

[30]  Karl Henrik Johansson,et al.  Structural stability of hybrid systems , 2001 .

[31]  João Pedro Hespanha,et al.  Stabilization of nonholonomic integrators via logic-based switching , 1999, Autom..

[32]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[33]  Yu. S. Ledyaev,et al.  A Lyapunov characterization of robust stabilization , 1999 .

[34]  F. Ancona,et al.  Patchy Vector Fields and Asymptotic Stabilization , 1999 .

[35]  Francis H. Clarke,et al.  State Constrained Feedback Stabilization , 2003, SIAM J. Control. Optim..

[36]  Francis H. Clarke,et al.  Feedback Stabilization and Lyapunov Functions , 2000, SIAM J. Control. Optim..

[37]  A. Teel,et al.  A smooth Lyapunov function from a class- ${\mathcal{KL}}$ estimate involving two positive semidefinite functions , 2000 .