Hybrid systems: Generalized solutions and robust stability
暂无分享,去创建一个
J. Hespanha | R. Sanfelice | A. Teel | R. Goebel | C. Cai
[1] Bo Hu,et al. Towards a stability theory of general hybrid dynamical systems , 1999, Autom..
[2] E. Ryan. An Integral Invariance Principle for Differential Inclusions with Applications in Adaptive Control , 1998 .
[3] Eduardo Sontag. Clocks and insensitivity to small measurement errors , 1999 .
[4] Jean-Pierre Aubin,et al. Impulse differential inclusions: a viability approach to hybrid systems , 2002, IEEE Trans. Autom. Control..
[5] Otomar Hájek,et al. Discontinuous differential equations, II , 1979 .
[6] Christophe Prieur,et al. Perturbed hybrid systems, applications in control theory , 2003 .
[7] Andrew R. Teel,et al. Smooth Lyapunov functions and robustness of stability for difference inclusions , 2004, Syst. Control. Lett..
[8] G. Tallini,et al. ON THE EXISTENCE OF , 1996 .
[9] A. Teel,et al. A Smooth Lyapunov Function from a Class-kl Estimate Involving Two Positive Semideenite Functions , 1999 .
[10] R. Decarlo,et al. Perspectives and results on the stability and stabilizability of hybrid systems , 2000, Proceedings of the IEEE.
[11] Daniel Liberzon,et al. Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.
[12] Andrew R. Teel,et al. Examples when nonlinear model predictive control is nonrobust , 2004, Autom..
[13] On Continuous Dependence of Solutions of Impulsive Differential Inclusions and Impulse Control Problems , 2002 .
[14] Ian A. Hiskens,et al. Trajectory Sensitivity Analysis of Hybrid Systems , 2000 .
[15] Shouchuan Hu. Differential equations with discontinuous right-hand sides☆ , 1991 .
[16] A. Michel. Recent trends in the stability analysis of hybrid dynamical systems , 1999 .
[17] Karl Henrik Johansson,et al. Dynamical properties of hybrid automata , 2003, IEEE Trans. Autom. Control..
[18] Hyungbo Shim,et al. Further results on robustness of (possibly discontinuous) sample and hold feedback , 2004, IEEE Transactions on Automatic Control.
[19] Yu. S. Ledyaev,et al. Asymptotic controllability implies feedback stabilization , 1997, IEEE Trans. Autom. Control..
[20] Fabio Ancona,et al. Flow Stability of Patchy Vector Fields and Robust Feedback Stabilization , 2002, SIAM J. Control. Optim..
[21] Aleksej F. Filippov,et al. Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.
[22] A. Astolfi,et al. Robust stabilization of chained systems via hybrid control , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..
[23] H. Hermes. Discontinuous vector fields and feedback control , 1966 .
[24] L. Tavernini. Differential automata and their discrete simulators , 1987 .
[25] A. Michel,et al. Stability theory for hybrid dynamical systems , 1998, IEEE Trans. Autom. Control..
[26] S. Sastry,et al. Structural stability of hybrid systems1 , 2001, 2001 European Control Conference (ECC).
[27] Francesca Ceragioli,et al. Some remarks on stabilization by means of discontinuous feedbacks , 2002, Syst. Control. Lett..
[28] S. Sastry,et al. On the existence of executions of hybrid automata , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).
[29] M. Branicky. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems , 1998, IEEE Trans. Autom. Control..
[30] Karl Henrik Johansson,et al. Structural stability of hybrid systems , 2001 .
[31] João Pedro Hespanha,et al. Stabilization of nonholonomic integrators via logic-based switching , 1999, Autom..
[32] R. Tyrrell Rockafellar,et al. Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.
[33] Yu. S. Ledyaev,et al. A Lyapunov characterization of robust stabilization , 1999 .
[34] F. Ancona,et al. Patchy Vector Fields and Asymptotic Stabilization , 1999 .
[35] Francis H. Clarke,et al. State Constrained Feedback Stabilization , 2003, SIAM J. Control. Optim..
[36] Francis H. Clarke,et al. Feedback Stabilization and Lyapunov Functions , 2000, SIAM J. Control. Optim..
[37] A. Teel,et al. A smooth Lyapunov function from a class- ${\mathcal{KL}}$ estimate involving two positive semidefinite functions , 2000 .