Digital Aerial Photogrammetry for Updating Area-Based Forest Inventories: A Review of Opportunities, Challenges, and Future Directions

[1]  Arko Lucieer,et al.  A comparison of area-based forest attributes derived from airborne laser scanner, small-format and medium-format digital aerial photography , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[2]  Jari Oksanen,et al.  Legacy effects of logging on boreal forest understorey vegetation communities in decadal time scales in northern Finland , 2019, Forest Ecology and Management.

[3]  Nicholas C. Coops,et al.  Vegetation Phenology Driving Error Variation in Digital Aerial Photogrammetrically Derived Terrain Models , 2018, Remote. Sens..

[4]  Fei Li,et al.  An Improved Digital Elevation Model of the Lunar Mons Rümker Region Based on Multisource Altimeter Data , 2018, Remote. Sens..

[5]  Nicholas C. Coops,et al.  Reply to Vauhkonen: Comment on Tompalski et al. Combining Multi-Date Airborne Laser Scanning and Digital Aerial Photogrammetric Data for Forest Growth and Yield Modelling. Remote Sens. 2018, 10, 347 , 2018, Remote. Sens..

[6]  Johan Holmgren,et al.  Forest Variable Estimation Using a High Altitude Single Photon Lidar System , 2018, Remote. Sens..

[7]  Nicholas C. Coops,et al.  Digital aerial photogrammetry for assessing cumulative spruce budworm defoliation and enhancing forest inventories at a landscape-level , 2018 .

[8]  J. Liénard,et al.  Correction to: ‘Intercomparison of photogrammetry software for three-dimensional vegetation modelling’ , 2018, Royal Society Open Science.

[9]  Arko Lucieer,et al.  Evaluating the robustness of point clouds from small format aerial photography over a Pinus radiata plantation , 2018, Australian Forestry.

[10]  Demetrios Gatziolis,et al.  Intercomparison of photogrammetry software for three-dimensional vegetation modelling , 2018, Royal Society Open Science.

[11]  Barbara Koch,et al.  UAV Photogrammetry of Forests as a Vulnerable Process. A Sensitivity Analysis for a Structure from Motion RGB-Image Pipeline , 2018, Remote. Sens..

[12]  M. L. Guillén-Climent,et al.  Testing the quality of forest variable estimation using dense image matching: a comparison with airborne laser scanning in a Mediterranean pine forest , 2018 .

[13]  Christine Stone,et al.  Comparing yield estimates derived from LiDAR and aerial photogrammetric point-cloud data with cut-to-length harvester data in a Pinus radiata plantation in Tasmania , 2018 .

[14]  Joanne C. White,et al.  Comparison of airborne laser scanning and digital stereo imagery for characterizing forest canopy gaps in coastal temperate rainforests , 2018 .

[15]  Nicholas C. Coops,et al.  Updating stand-level forest inventories using airborne laser scanning and Landsat time series data , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[16]  A. Hudak,et al.  Transferability of Lidar-derived Basal Area and Stem Density Models within a Northern Idaho Ecoregion , 2018 .

[17]  Ronald E. McRoberts,et al.  The shelf-life of airborne laser scanning data for enhancing forest inventory inferences , 2018 .

[18]  Nicholas C. Coops,et al.  Combining Multi-Date Airborne Laser Scanning and Digital Aerial Photogrammetric Data for Forest Growth and Yield Modelling , 2018, Remote. Sens..

[19]  Nicholas C. Coops,et al.  Enhancing the Estimation of Stem-Size Distributions for Unimodal and Bimodal Stands in a Boreal Mixedwood Forest with Airborne Laser Scanning Data , 2018 .

[20]  Luigi Fregonese,et al.  Planning airborne photogrammetry and remote-sensing missions with modern platforms and sensors , 2018 .

[21]  Vicente Pérez-Muñuzuri,et al.  Extreme Wave Height Events in NW Spain: A Combined Multi-Sensor and Model Approach , 2017, Remote. Sens..

[22]  N. Magagnotti,et al.  The effect of feedstock, knife wear and work station on the exposure to noise and vibrations in wood chipping operations , 2018 .

[23]  E. Næsset,et al.  Value of airborne laser scanning and digital aerial , 2018 .

[24]  E. Næsset,et al.  Digital aerial photogrammetry can efficiently support large-area forest inventories in Norway , 2017 .

[25]  Hans Pretzsch,et al.  Using canopy heights from digital aerial photogrammetry to enable spatial transfer of forest attribute models: a case study in central Europe , 2017 .

[26]  M. Kukkonen,et al.  Image matching as a data source for forest inventory - Comparison of Semi-Global Matching and Next-Generation Automatic Terrain Extraction algorithms in a typical managed boreal forest environment , 2017, Int. J. Appl. Earth Obs. Geoinformation.

[27]  Petteri Packalen,et al.  Assessing the performance of aerial image point cloud and spectral metrics in predicting boreal forest canopy cover , 2017 .

[28]  B. Koch,et al.  Comparing Airborne Laser Scanning, and Image-Based Point Clouds by Semi-Global Matching and Enhanced Automatic Terrain Extraction to Estimate Forest Timber Volume , 2017 .

[29]  Nicholas C. Coops,et al.  Updating residual stem volume estimates using ALS- and UAV-acquired stereo-photogrammetric point clouds , 2017 .

[30]  M. Mokroš,et al.  Accuracy of Photogrammetric UAV-Based Point Clouds under Conditions of Partially-Open Forest Canopy , 2017 .

[31]  Håkan Olsson,et al.  Estimating vertical canopy cover using dense image-based point cloud data in four vegetation types in southern Sweden , 2017 .

[32]  Caroline Mohammed,et al.  Application of Remote Sensing Technologies for Assessing Planted Forests Damaged by Insect Pests and Fungal Pathogens: a Review , 2017, Current Forestry Reports.

[33]  C CoopsNicholas,et al.  Unmanned aerial systems for precision forest inventory purposes: A review and case study , 2017 .

[34]  Nicholas C. Coops,et al.  Regional mapping of vegetation structure for biodiversity monitoring using airborne lidar data , 2017, Ecol. Informatics.

[35]  Petteri Packalen,et al.  Forest Change Detection by Using Point Clouds From Dense Image Matching Together With a LiDAR-Derived Terrain Model , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[36]  J. Holmgren,et al.  Individual Tree Crown Methods for 3D Data from Remote Sensing , 2017, Current Forestry Reports.

[37]  Terje Gobakken,et al.  Assessing 3D point clouds from aerial photographs for species-specific forest inventories , 2017 .

[38]  E. Næsset,et al.  Forest resource mapping using 3 D remote sensing : Combining national forest inventory data and digital aerial photogrammetry , 2017 .

[39]  Arko Lucieer,et al.  Photogrammetry for Forest Inventory: Planning Guidelines , 2017 .

[40]  M. Kanninen,et al.  Special issue: Drought and Dryland Management – a commentary , 2017 .

[41]  M. Nilsson,et al.  Mapping forest attributes using data from stereophotogrammetry of aerial images and field data from the national forest inventory , 2017 .

[42]  S. Tuominen,et al.  Improving Finnish Multi-Source National Forest Inventory by 3D aerial imaging , 2017 .

[43]  Nicholas C. Coops,et al.  Enhancing Forest Growth and Yield Predictions with Airborne Laser Scanning Data: Increasing Spatial Detail and Optimizing Yield Curve Selection through Template Matching , 2016 .

[44]  Christine Stone,et al.  Alternatives to LiDAR-derived canopy height models for softwood plantations: a review and example using photogrammetry , 2016 .

[45]  Joanne C. White,et al.  Remote Sensing Technologies for Enhancing Forest Inventories: A Review , 2016 .

[46]  Juha Hyyppä,et al.  Evaluating the performance of high-altitude aerial image-based digital surface models in detecting individual tree crowns in mature boreal forests , 2016 .

[47]  Carola-Bibiane Schönlieb,et al.  Individual Tree Species Classification From Airborne Multisensor Imagery Using Robust PCA , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[48]  Juha Hyyppä,et al.  International Benchmarking of the Individual Tree Detection Methods for Modeling 3-D Canopy Structure for Silviculture and Forest Ecology Using Airborne Laser Scanning , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[49]  國合會系統管理者 Global Forest Resources Assessment , 2016 .

[50]  Mark W. Smith,et al.  Structure from motion photogrammetry in physical geography , 2016 .

[51]  L. Wallace,et al.  Assessment of Forest Structure Using Two UAV Techniques: A Comparison of Airborne Laser Scanning and Structure from Motion (SfM) Point Clouds , 2016 .

[52]  R. McRoberts,et al.  A questionnaire-based review of the operational use of remotely sensed data by national forest inventories , 2016 .

[53]  Joanne C. White,et al.  Forest stand age classification using time series of photogrammetrically derived digital surface models , 2016 .

[54]  Elisa Dall'Asta,et al.  Semi-global techniques in image matching and change detection with applications to civil and environmental engineering. , 2016 .

[55]  Piermaria Corona,et al.  Consolidating new paradigms in large-scale monitoring and assessment of forest ecosystems. , 2016, Environmental research.

[56]  H. Olsson,et al.  Data Assimilation in Forest Inventory: First Empirical Results , 2015 .

[57]  Michael J. Falkowski,et al.  Temporal transferability of LiDAR-based imputation of forest inventory attributes , 2015 .

[58]  Juha Hyyppä,et al.  Comparison of Laser and Stereo Optical, SAR and InSAR Point Clouds from Air- and Space-Borne Sources in the Retrieval of Forest Inventory Attributes , 2015, Remote. Sens..

[59]  Eija Honkavaara,et al.  Using UAV-Based Photogrammetry and Hyperspectral Imaging for Mapping Bark Beetle Damage at Tree-Level , 2015, Remote. Sens..

[60]  S. Solberg,et al.  Forest Parameter Prediction Using an Image-Based Point Cloud: A Comparison of Semi-ITC with ABA , 2015 .

[61]  D. Pitt,et al.  A Comparison of Airborne Laser Scanning and Image Point Cloud Derived Tree Size Class Distribution Models in Boreal Ontario , 2015 .

[62]  B. St-Onge,et al.  Characterizing the Height Structure and Composition of a Boreal Forest Using an Individual Tree Crown Approach Applied to Photogrammetric Point Clouds , 2015 .

[63]  Joanne C. White,et al.  Comparing ALS and Image-Based Point Cloud Metrics and Modelled Forest Inventory Attributes in a Complex Coastal Forest Environment , 2015 .

[64]  K. Macdicken,et al.  Global Forest Resources Assessment 2015: What, why and how?☆ , 2015 .

[65]  M. Nolan,et al.  Mapping snow depth from manned aircraft on landscape scales at centimeter resolution using structure-from-motion photogrammetry , 2015 .

[66]  Nicholas C. Coops,et al.  Enriching ALS-Derived Area-Based Estimates of Volume through Tree-Level Downscaling , 2015 .

[67]  Terje Gobakken,et al.  Inventory of Small Forest Areas Using an Unmanned Aerial System , 2015, Remote. Sens..

[68]  C. Straub,et al.  Assessing height changes in a highly structured forest using regularly acquired aerial image data , 2015 .

[69]  Paul D. Pickell,et al.  Estimating Forest Site Productivity Using Airborne Laser Scanning Data and Landsat Time Series , 2015 .

[70]  Martina L. Hobi,et al.  Countrywide Stereo-Image Matching for Updating Digital Surface Models in the Framework of the Swiss National Forest Inventory , 2015, Remote. Sens..

[71]  J. Holmgren,et al.  The potential of digital surface models based on aerial images for automated vegetation mapping , 2015 .

[72]  Juha Hyyppä,et al.  FOREST INVENTORY ATTRIBUTE ESTIMATION USING AIRBORNE LASER SCANNING, AERIAL STEREO IMAGERY, RADARGRAMMETRY AND INTERFEROMETRY–FINNISH EXPERIENCES OF THE 3D TECHNIQUES , 2015 .

[73]  Terje Gobakken,et al.  Modeling and predicting aboveground biomass change in young forest using multi-temporal airborne laser scanner data , 2015 .

[74]  E. Næsset,et al.  Comparing biophysical forest characteristics estimated from photogrammetric matching of aerial images and airborne laser scanning data , 2015 .

[75]  Paul D. Pickell,et al.  Landsat time series , 2015 .

[76]  Nicholas C. Coops,et al.  Simulating the impacts of error in species and height upon tree volume derived from airborne laser scanning data , 2014 .

[77]  R. Jensen,et al.  Utilizing National Agriculture Imagery Program Data to Estimate Tree Cover and Biomass of Piñon and Juniper Woodlands , 2014 .

[78]  R. Pulkki,et al.  Economic impact of enhanced forest inventory information and merchandizing yards in the forest product industry supply chain , 2014 .

[79]  Juha Hyyppä,et al.  Outlook for the Next Generation’s Precision Forestry in Finland , 2014 .

[80]  Fabio Remondino,et al.  State of the art in high density image matching , 2014 .

[81]  D. Pitt,et al.  A Comparison of Point Clouds Derived from Stereo Imagery and Airborne Laser Scanning for the Area-Based Estimation of Forest Inventory Attributes in Boreal Ontario , 2014 .

[82]  E. Næsset Area-Based Inventory in Norway – From Innovation to an Operational Reality , 2014 .

[83]  Göran Ståhl,et al.  Adapting National Forest Inventories to changing requirements - the case of the Swedish National Forest Inventory at the turn of the 20th century , 2014 .

[84]  Joanne C. White,et al.  Airborne laser scanning and digital stereo imagery measures of forest structure: comparative results and implications to forest mapping and inventory update , 2013 .

[85]  Juha Hyyppä,et al.  Performance of dense digital surface models based on image matching in the estimation of plot-level forest variables , 2013 .

[86]  Joanne C. White,et al.  The Utility of Image-Based Point Clouds for Forest Inventory: A Comparison with Airborne Laser Scanning , 2013 .

[87]  Lars T. Waser,et al.  Potential of UltraCamX stereo images for estimating timber volume and basal area at the plot level in mixed European forests , 2013 .

[88]  Eija Honkavaara,et al.  Automatic Storm Damage Detection in Forests Using High-Altitude Photogrammetric Imagery , 2013, Remote. Sens..

[89]  Wei Yao,et al.  Detection of 3-D Individual Trees in Urban Areas by Combining Airborne LiDAR Data and Imagery , 2013, IEEE Geoscience and Remote Sensing Letters.

[90]  Martin Isenburg,et al.  LASzip: Lossless Compression of Lidar Data , 2013 .

[91]  M. Westoby,et al.  ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications , 2012 .

[92]  Jacob Strunk,et al.  Effects of lidar pulse density and sample size on a model-assisted approach to estimate forest inventory variables , 2012 .

[93]  Sakari Tuominen,et al.  Forest variable estimation using a high-resolution digital surface model , 2012 .

[94]  Thomas P. Kersten,et al.  Low-Cost and Open-Source Solutions for Automated Image Orientation - A Critical Overview , 2012, EuroMed.

[95]  Liviu Theodor Ene,et al.  Single tree detection in heterogeneous boreal forests using airborne laser scanning and area-based stem number estimates , 2012 .

[96]  Joanne C. White,et al.  Lidar sampling for large-area forest characterization: A review , 2012 .

[97]  Jörgen Wallerman,et al.  Forest variable estimation using photogrammetric matching of digital aerial images in combination with a high-resolution DEM , 2012 .

[98]  Kevin Lim,et al.  LiDAR Sampling Density for Forest Resource Inventories in Ontario, Canada , 2012, Remote. Sens..

[99]  E. Næsset,et al.  A fine-scale model for area-based predictions of tree-size-related attributes derived from LiDAR canopy heights , 2012 .

[100]  Maggi Kelly,et al.  A New Method for Segmenting Individual Trees from the Lidar Point Cloud , 2012 .

[101]  K. Nurminen,et al.  Influence of solar elevation in radiometric and geometric performance of multispectral photogrammetry , 2012 .

[102]  Heiko Hirschmüller,et al.  Semi-Global Matching-Motivation, Developments and Applications , 2011 .

[103]  K. O. Niemann,et al.  Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass , 2011 .

[104]  K. Lim,et al.  Operational implementation of a LiDAR inventory in Boreal Ontario , 2011 .

[105]  Aiwu Zhang,et al.  A Method to Align POS Data and Linear Push-Broom Imaging Data , 2011 .

[106]  Camillo Ressl,et al.  Digital Photogrammetric Camera Evaluation - Generation of Di- gital Elevation Models , 2010 .

[107]  M. Nieuwenhuis,et al.  Retrieval of forest structural parameters using LiDAR remote sensing , 2010, European Journal of Forest Research.

[108]  Erle C. Ellis,et al.  Remote Sensing of Vegetation Structure Using Computer Vision , 2010, Remote. Sens..

[109]  Ian Ferguson,et al.  Campaign and site effects in LiDAR prediction models for site-quality assessment of radiata pine plantations in South Australia , 2010 .

[110]  H. Lee,et al.  Adaptive clustering of airborne LiDAR data to segment individual tree crowns in managed pine forests , 2010 .

[111]  E. Tomppo National Forest Inventories : pathways for common reporting , 2010 .

[112]  T. Pock,et al.  Point Clouds: Lidar versus 3D Vision , 2010 .

[113]  Eija Honkavaara,et al.  Digital Airborne Photogrammetry - A New Tool for Quantitative Remote Sensing? - A State-of-the-Art Review On Radiometric Aspects of Digital Photogrammetric Images , 2009, Remote. Sens..

[114]  Cédric Véga,et al.  Mapping site index and age by linking a time series of canopy height models with growth curves , 2009 .

[115]  K. Lim,et al.  Examining the effects of sampling point densities on laser canopy height and density metrics , 2008 .

[116]  Joanne C. White,et al.  The role of LiDAR in sustainable forest management , 2008 .

[117]  Y. Hu,et al.  Mapping canopy height using a combination of digital stereo‐photogrammetry and lidar , 2008 .

[118]  E. Baltsavias,et al.  Assessing changes of forest area and shrub encroachment in a mire ecosystem using digital surface models and CIR aerial images , 2008 .

[119]  Cédric Véga,et al.  Height growth reconstruction of a boreal forest canopy over a period of 58 years using a combination of photogrammetric and lidar models , 2008 .

[120]  Lars T. Waser,et al.  High‐quality image matching and automated generation of 3D tree models , 2008 .

[121]  Heiko Hirschmüller,et al.  Stereo Processing by Semiglobal Matching and Mutual Information , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[122]  N. Coops,et al.  Update of forest inventory data with lidar and high spatial resolution satellite imagery , 2008 .

[123]  Fabio Remondinoa,et al.  IMAGE-BASED SURFACE MEASUREMENT FOR CLOSE-RANGE HERITAGE DOCUMENTATION , 2008 .

[124]  de,et al.  ASPECTS OF THE DSM PRODUCTION WITH HIGH RESOLUTION IMAGES , 2008 .

[125]  R. McRoberts,et al.  Remote sensing support for national forest inventories , 2007 .

[126]  E. Næsset Airborne laser scanning as a method in operational forest inventory: Status of accuracy assessments accomplished in Scandinavia , 2007 .

[127]  Gordon Petrie,et al.  Airborne digital imaging technology: a new overview , 2007 .

[128]  H. Hirschmüller Ieee Transactions on Pattern Analysis and Machine Intelligence 1 Stereo Processing by Semi-global Matching and Mutual Information , 2022 .

[129]  E. Mikhail,et al.  Manual of Photogrammetry, 5th Edition , 2006 .

[130]  H. Hirschmuller Accurate and efficient stereo processing by semi-global matching and mutual information , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[131]  William A. Bechtold,et al.  The enhanced forest inventory and analysis program - national sampling design and estimation procedures , 2005 .

[132]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[133]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[134]  Randolph H. Wynne,et al.  Estimating plot-level tree heights with lidar : local filtering with a canopy-height based variable window size , 2002 .

[135]  E. Næsset Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .

[136]  Erik Næsset,et al.  Determination of Mean Tree Height of Forest Stands by Digital Photogrammetry , 2002 .

[137]  Zhang Li,et al.  Automatic DTM Generation from Three-Line-Scanner (TLS) Images , 2002 .

[138]  S. Franklin Remote Sensing for Sustainable Forest Management , 2001 .

[139]  N. Haala,et al.  DIRECT GEOREFERENCING USING GPS/INERTIAL EXTERIOR ORIENTATIONS FOR PHOTOGRAMMETRIC APPLICATIONS , 2000 .

[140]  D. Fritsch,et al.  ON THE PREFORMANCE OF DIGITAL AIRBORNE PUSHBROOM CAMERAS FOR PHOTOGRAMMETRIC DATA PROCESSING - A CASE STUDY , 2000 .

[141]  Emmanuel P. Baltsavias,et al.  Airborne laser scanning: basic relations and formulas , 1999 .

[142]  Emmanuel P. Baltsavias,et al.  A comparison between photogrammetry and laser scanning , 1999 .

[143]  Norbert Haala,et al.  CALIBRATION OF DIRECTLY MEASURED POSITION AND ATTITUDE BY AEROTRIANGULATION OF THREE – LINE AIRBORNE IMAGERY , 1998 .

[144]  D. Leckie,et al.  Forest inventory update in Canada , 1996 .

[145]  D. Leckie,et al.  Forest inventory in Canada with emphasis on map production , 1995 .

[146]  Steen Magnussen,et al.  Forest Inventories in Canada: A Framework for Change , 1987 .

[147]  V. Zsilinszky The practice of photo interpretation for a forest inventory (Commission VII, Invited paper, Lisbon 1964) , 1962 .

[148]  S. Spurr The Forests of Itasca in the Nineteenth Century as Related to Fire , 1954 .

[149]  M. Lemmens Digital Aerial Cameras System Confi gurations and Sensor Architectures , 2022 .