Electric-field-induced coherent coupling of the exciton states in a single quantum dot

The ability to generate entangled photon pairs from a quantum dot critically depends on the size of the fine-structure splitting of its exciton states. A demonstration of the ability to tune this splitting with an electric field represents a promising step in the use of quantum dots to generate entangled photon pairs on demand.

[1]  Guang-Can Guo,et al.  Highly reduced fine-structure splitting in InAs/InP quantum dots offering an efficient on-demand entangled 1.55-microm photon emitter. , 2008, Physical review letters.

[2]  D. Ritchie,et al.  Magnetic-field-induced reduction of the exciton polarization splitting in InAs quantum dots , 2006, quant-ph/0601199.

[3]  O. Schmidt,et al.  Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K , 2007 .

[4]  Gabriel Bester,et al.  Lower bound for the excitonic fine structure splitting in self-assembled quantum dots. , 2010, Physical review letters.

[5]  Pierre Petroff,et al.  Effect of uniaxial stress on excitons in a self-assembled quantum dot , 2006 .

[6]  D. Ritchie,et al.  A semiconductor source of triggered entangled photon pairs , 2006, Nature.

[7]  Paul Voisin,et al.  Monitoring electrically driven cancellation of exciton fine structure in a semiconductor quantum dot by optical orientation , 2007 .

[8]  O. Krebs,et al.  Manipulating exciton fine structure in quantum dots with a lateral electric field , 2006, cond-mat/0608711.

[9]  Lucio Robledo,et al.  Observation of dressed excitonic states in a single quantum dot. , 2007, Physical review letters.

[10]  D. Ritchie,et al.  Evolution of entanglement between distinguishable light states. , 2008, Physical review letters.

[11]  A. Lemaître,et al.  Stark spectroscopy of Coulomb interactions in individual InAs/GaAs self‐assembled quantum dots , 2006 .

[12]  R. Leighton,et al.  Feynman Lectures on Physics , 1971 .

[13]  M. S. Skolnick,et al.  Quantum-confined Stark shifts of charged exciton complexes in quantum dots , 2004 .

[14]  D. Ritchie,et al.  Coherence of an entangled exciton-photon state. , 2007, Physical review letters.

[15]  Johann Peter Reithmaier,et al.  ELECTRON AND HOLE G FACTORS AND EXCHANGE INTERACTION FROM STUDIES OF THE EXCITON FINE STRUCTURE IN IN0.60GA0.40AS QUANTUM DOTS , 1999 .

[16]  Stephan W Koch,et al.  Vacuum Rabi splitting in semiconductors , 2006 .

[17]  Oxide-apertured microcavity single-photon emitting diode , 2007, 0709.2105.

[18]  L. Grenouillet,et al.  Electrically driven high-Q quantum dot-micropillar cavities , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[19]  John Lawall,et al.  Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect. , 2009, Physical review letters.

[20]  J. A. Barker,et al.  Theoretical analysis of electron-hole alignment in InAs-GaAs quantum dots , 2000 .

[21]  I. Favero,et al.  Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot , 2006, cond-mat/0610346.

[22]  B. Gerardot,et al.  Gigahertz bandwidth electrical control over a dark exciton-based memory bit in a single quantum dot , 2009 .

[23]  V. L. Korenev,et al.  Optical Signatures of Coupled Quantum Dots , 2006, Science.

[24]  H. Ohno,et al.  Vertical electric field tuning of the exciton fine structure splitting and photon correlation measurements of GaAs quantum dot , 2010 .

[25]  R. M. Stevenson,et al.  Inversion of exciton level splitting in quantum dots , 2005 .

[26]  Peter Michler,et al.  Influence of lateral electric fields on multiexcitonic transitions and fine structure of single quantum dots , 2007 .

[27]  B. V. Shanabrook,et al.  Homogeneous Linewidths in the Optical Spectrum of a Single Gallium Arsenide Quantum Dot , 1996, Science.

[28]  Andrew J. Shields,et al.  Electrical control of the uncertainty in the time of single photon emission events , 2005 .